Groups, Fields, and Vector Spaces
Homework \#2 (2018-2019), Answers
Q1: Building larger groups from smaller ones: the general setup
Say H and K are groups, with identity elements e_{H} and e_{K} and group operations \circ_{H} and \circ_{K}. We define the "direct product" of H and K , denoted $G=H \times K$, as follows. The elements of G are ordered pairs of elements of H and K , with a typical element denoted $g_{i}=h_{i} \times k_{i}$ with h_{i} in H and k_{i} in K . We define an operation \circ_{G} in G by $\left(h_{1} \times k_{1}\right) \circ_{G}\left(h_{2} \times k_{2}\right)=\left(h_{1} \circ_{H} h_{2}\right) \times\left(k_{1} \circ_{K} k_{2}\right)$, i.e., the elements of G combine component-wise, according to the operations in their respective groups.

A note on terminology - direct product and direct sum - the terminology is very inconvenient. The "direct product" of two groups is synonymous with the "direct sum", which is denoted $G=H \oplus K$. "Direct sum" (or "direct product") of groups are directly analogous to the "direct sum" or "direct product" construction for vector spaces. But unfortunately the term "direct product" is usually used for groups, and the term "direct sum" is usually used for vector spaces. To avoid confusion with other standard presentations, we will use this unfortunate convention. A further note - for combining an infinite number of groups (or vector spaces), there is a distinction between the direct sum and the direct product- but this is irrelevant to us.

Show that the set of g_{i} form a group, G.

Q2: Building larger groups from smaller ones: examples
Recall that \mathbb{Z}_{p} is the group containing the elements $\{0,1, \ldots, p-1\}$, with the group operation of addition $\bmod \mathrm{p}$ - the "cyclic group" of p elements. We denote the group operation by + , and use αx as a shorthand for $x+x+\ldots+x$ a total of α times.
A. How many elements are in $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$?
B. Is $\mathbb{Z}_{3} \times \mathbb{Z}_{5}$ isomorphic to \mathbb{Z}_{15} ? Hint: let h be a non-identity element of \mathbb{Z}_{3}, and k be a non-identity element of \mathbb{Z}_{5}. What is the order of $h \times k$?
C. Is $\mathbb{Z}_{3} \times \mathbb{Z}_{4}$ isomorphic to \mathbb{Z}_{12} ?
D. Is $\mathbb{Z}_{3} \times \mathbb{Z}_{6}$ isomorphic to \mathbb{Z}_{18} ?
E. Formulate a hypothesis for when $\mathbb{Z}_{p} \times \mathbb{Z}_{q}$ is isomorphic to $\mathbb{Z}_{p q}$, and (optionally) prove it.

Q3: Subgroups generated by the parity homomorphism
A. Consider the group of rotations and reflections of the square. Note that it has 8 elements. Label the corners of the square by $\mathrm{W}, \mathrm{X}, \mathrm{Y}$, and Z in cyclic order. Which group elements correspond to even permutations, and which group elements correspond to odd permutations? Verify that the subset corresponding to even permutations is a subgroup.
B. Same setup as above, but now label the edges of the square in cyclic order as p,q,r, and s. Which group elements correspond to even permutations, and which group elements correspond to odd permutations? Verify that the subset corresponding to even permutations is a subgroup.
C. Similar setup as above, but consider motions of a pentagon, with vertices labeled V, W, X, Y, and Z in cyclic order.

