Groups, Fields, and Vector Spaces

Homework #3 (2018-2019), Answers

Q1: Tensor products: concrete examples – preliminary for determinant

Let V and W be two-dimensional vector spaces, with bases $\{v_1, v_2\}$ and $\{w_1, w_2\}$. So $\{v_i \otimes w_j\}$ is a basis for $V \otimes W$. Say $x_i \in V$ has the basis expansion $x = \alpha_1 v_1 + \alpha_2 v_2$ and $y_i \in W$ has the basis expansion $y = \beta_1 w_1 + \beta_2 w_2$.

A. Expand
$$x \otimes y$$
 in the basis $\{v_i \otimes w_j\}$.
 $x \otimes y$
 $= (\alpha_1 v_1 + \alpha_2 v_2) \otimes (\beta_1 w_1 + \beta_2 w_2)$
 $= (\alpha_1 v_1 + \alpha_2 v_2) \otimes (\beta_1 w_1) + (\alpha_1 v_1 + \alpha_2 v_2) \otimes (\beta_2 w_2)$
 $= (\alpha_1 v_1) \otimes (\beta_1 w_1) + (\alpha_2 v_2) \otimes (\beta_1 w_1) + (\alpha_1 v_1) \otimes (\beta_2 w_2) + (\alpha_2 v_2) \otimes (\beta_2 w_2)$
 $= \alpha_1 \beta_1 (v_1 \otimes w_1) + \alpha_2 \beta_1 (v_2 \otimes w_1) + \alpha_1 \beta_2 (v_1 \otimes w_2) + \alpha_2 \beta_2 (v_2 \otimes w_2)$

B. Now say V = W, and we are using the same basis for x and y, so that $x = \alpha_1 v_1 + \alpha_2 v_2$ and $y = \beta_1 v_1 + \beta_2 v_2$. Expand $x \otimes y$ in the basis $\{v_i \otimes v_j\}$. Taking $w_i = v_i$ in part A, $x \otimes y = \alpha_1 \beta_1 (v_1 \otimes v_1) + \alpha_2 \beta_1 (v_2 \otimes v_1) + \alpha_1 \beta_2 (v_1 \otimes v_2) + \alpha_2 \beta_2 (v_2 \otimes v_2)$

C. Expand $x \otimes y + y \otimes x$ in the basis $\{v_i \otimes v_j\}$. $(x \otimes y) + (y \otimes x)$ $= (\alpha_1 \beta_1 (v_1 \otimes v_1) + \alpha_2 \beta_1 (v_2 \otimes v_1) + \alpha_1 \beta_2 (v_1 \otimes v_2) + \alpha_2 \beta_2 (v_2 \otimes v_2))$ $+ (\beta_1 \alpha_1 (v_1 \otimes v_1) + \beta_2 \alpha_1 (v_2 \otimes v_1) + \beta_1 \alpha_2 (v_1 \otimes v_2) + \beta_2 \alpha_2 (v_2 \otimes v_2))$ $= 2\alpha_1 \beta_1 (v_1 \otimes v_1) + (\alpha_2 \beta_1 + \beta_2 \alpha_1) (v_2 \otimes v_1) + (\alpha_1 \beta_2 + \beta_1 \alpha_2) (v_1 \otimes v_2) + 2\alpha_2 \beta_2 (v_2 \otimes v_2)$

D. Expand $x \otimes y - y \otimes x$ in the basis $\{v_i \otimes v_j\}$. $(x \otimes y) - (y \otimes x)$ $= (\alpha_1 \beta_1 (v_1 \otimes v_1) + \alpha_2 \beta_1 (v_2 \otimes v_1) + \alpha_1 \beta_2 (v_1 \otimes v_2) + \alpha_2 \beta_2 (v_2 \otimes v_2))$ $- (\beta_1 \alpha_1 (v_1 \otimes v_1) + \beta_2 \alpha_1 (v_2 \otimes v_1) + \beta_1 \alpha_2 (v_1 \otimes v_2) + \beta_2 \alpha_2 (v_2 \otimes v_2))$ $= (\alpha_2 \beta_1 - \beta_2 \alpha_1) (v_2 \otimes v_1) + (\alpha_1 \beta_2 - \beta_1 \alpha_2) (v_1 \otimes v_2)$ $= (\alpha_2 \beta_1 - \beta_2 \alpha_1) ((v_2 \otimes v_1) - (v_1 \otimes v_2))$ A similar setup of part B of Q1: $\{v_1, v_2\}$ is a basis for a two-dimensional space V. In this basis, the linear transformation M is defined by the matrix $M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}$, where $Mv_1 = m_{11}v_1 + m_{12}v_2$ and

 $Mv_2 = m_{21}v_1 + m_{22}v_2$. We are guaranteed that $anti(V^{\otimes 2})$ is one-dimensional, and that it is spanned by $\varphi = (v_1 \otimes v_2) - (v_2 \otimes v_1)$, so that $M\varphi$ is a multiple of φ . Compute this multiple, i.e., the determinant, by computing $M\varphi$.

First, using the definition of M and how it acts in a tensor-product space: $M \varphi = M (v_1 \otimes v_2) - M (v_2 \otimes v_1)$ $= (Mv_1 \otimes Mv_2) - (Mv_2 \otimes Mv_1)$ $= ((m_{11}v_1 + m_{12}v_2) \otimes (m_{21}v_1 + m_{22}v_2)) - ((m_{21}v_1 + m_{22}v_2) \otimes (m_{11}v_1 + m_{12}v_2))$

Now, reduce the above using the properties of tensor product (i.e., the distributive law):

$$\begin{split} &\left(\left(m_{11}v_{1}+m_{12}v_{2}\right)\otimes\left(m_{21}v_{1}+m_{22}v_{2}\right)\right)-\left(\left(m_{21}v_{1}+m_{22}v_{2}\right)\otimes\left(m_{11}v_{1}+m_{12}v_{2}\right)\right)\\ &=\left(m_{11}m_{21}\left(v_{1}\otimes v_{1}\right)+m_{11}m_{22}\left(v_{1}\otimes v_{2}\right)+m_{12}m_{21}\left(v_{2}\otimes v_{1}\right)+m_{12}m_{22}\left(v_{2}\otimes v_{2}\right)\right)\\ &-\left(m_{21}m_{11}\left(v_{1}\otimes v_{1}\right)+m_{21}m_{12}\left(v_{1}\otimes v_{2}\right)+m_{22}m_{11}\left(v_{2}\otimes v_{1}\right)+m_{22}m_{12}\left(v_{2}\otimes v_{2}\right)\right)\\ &=\left(m_{11}m_{21}-m_{21}m_{11}\right)\left(v_{1}\otimes v_{1}\right)+\left(m_{11}m_{22}-m_{21}m_{12}\right)\left(v_{1}\otimes v_{2}\right)\\ &+\left(m_{12}m_{21}-m_{22}m_{11}\right)\left(v_{2}\otimes v_{1}\right)+\left(m_{12}m_{22}-m_{22}m_{12}\right)\left(v_{2}\otimes v_{2}\right)\\ &=\left(m_{11}m_{22}-m_{21}m_{12}\right)\left(v_{1}\otimes v_{2}\right)+\left(m_{12}m_{21}-m_{22}m_{11}\right)\left(v_{2}\otimes v_{1}\right)\\ &=\left(m_{11}m_{22}-m_{21}m_{12}\right)\left(\left(v_{1}\otimes v_{2}\right)-\left(v_{2}\otimes v_{1}\right)\right)\\ &=\left(m_{11}m_{22}-m_{21}m_{12}\right)\left(v_{1}\otimes v_{2}\right)-\left(v_{2}\otimes v_{1}\right)\right)\\ \end{split}$$

This last factor, as expected, is the determinant of M.

Q3. Another finite field example

Recall that \mathbb{Z}_2 is the field containing {0,1}, with addition and multiplication defined (mod 2). Consider the polynomial $x^4 + x + 1 = 0$. This has no solutions in \mathbb{Z}_2 , so let's add a formal quantity ξ for which $\xi^4 + \xi + 1 = 0$ (and which satisfies the associative, commutative, and distributive laws for addition and multiplication with itself and with {0,1}), and see whether it generates a field.

Using $\xi^4 + \xi + 1 = 0$, express ξ^r in terms of 1, ξ , ξ^2 , and ξ^3 for r = 1,...,15.

Since field operations are "mod 2", we can replace -1 by +1, and 0 by 2. So, for example, $\xi^4 + \xi + 1 = 0$ implies $\xi^4 = \xi + 1$. Using the field properties (distributive law), $\xi^5 = \xi \cdot \xi^4 = \xi(\xi + 1) = \xi^2 + \xi$;

 $\xi^{6} = \xi \cdot \xi^{5} = \xi(\xi^{2} + \xi) = \xi^{3} + \xi^{2};$ $\xi^{7} = \xi \cdot \xi^{6} = \xi(\xi^{3} + \xi^{2}) = \xi^{4} + \xi^{3} = \xi^{3} + \xi + 1$ (Here, we had to use $\xi^{4} = \xi + 1$ in the last step.)

Working similarly, the table of coefficients is:

	ξ^3	ξ^2	ξ^1	ξ^0
$\xi^0 =$	0	0	0	1
$\xi^1 =$	0	0	1	0
$\xi^2 =$	0	1	0	0
$\xi^3 =$	1	0	0	0
$\xi^{3} =$ $\xi^{4} =$ $\xi^{5} =$ $\xi^{6} =$	0	0	1	1
$\xi^5 =$	0	1	1	0
$\xi^6 =$	1	1	0	0
$\xi^7 =$	1	0	1	1
$\xi^8 =$	0	1	0	1
$\xi^9 =$	1	0	1	0
$\xi^{10} =$	0	1	1	1
$\xi^{11} =$	1	1	1	0
$\xi^{12} =$	1	1	1	1
$\xi^{13} =$	1	1	0	1
$\xi^{14} =$	1	0	0	1
$\xi^{15} =$	0	0	0	1

Note that every combination of 0's and 1's occurs in some row, except for 0,0,0,0. (Why does this have to be?) Note also that $\xi^{15} = \xi^0 = 1$.