## Groups, Fields, and Vector Spaces

Homework \#3 (2018-2019), Questions
Q1: Tensor products: concrete examples - preliminary for determinant
Let $V$ and $W$ be two-dimensional vector spaces, with bases $\left\{v_{1}, v_{2}\right\}$ and $\left\{w_{1}, w_{2}\right\}$. So $\left\{v_{i} \otimes w_{j}\right\}$ is a basis for $V \otimes W$. Say $x_{i} \in V$ has the basis expansion $x=\alpha_{1} v_{1}+\alpha_{2} v_{2}$ and $y_{i} \in W$ has the basis expansion $y=\beta_{1} w_{1}+\beta_{2} w_{2}$.
A. Expand $x \otimes y$ in the basis $\left\{v_{i} \otimes w_{j}\right\}$.
B. Now say $V=W$, and we are using the same basis for x and y , so that $x=\alpha_{1} v_{1}+\alpha_{2} v_{2}$ and $y=\beta_{1} v_{1}+\beta_{2} v_{2}$. Expand $x \otimes y$ in the basis $\left\{v_{i} \otimes v_{j}\right\}$.
C. Expand $x \otimes y+y \otimes x$ in the basis $\left\{v_{i} \otimes v_{j}\right\}$.
D. Expand $x \otimes y-y \otimes x$ in the basis $\left\{v_{i} \otimes v_{j}\right\}$.

Q2. Explicit construction of a $2 \times 2$ determinant
A similar setup of part B of Q1: $\left\{v_{1}, v_{2}\right\}$ is a basis for a two-dimensional space $V$. In this basis, the linear transformation $M$ is defined by the matrix $M=\left(\begin{array}{ll}m_{11} & m_{12} \\ m_{21} & m_{22}\end{array}\right)$, where $M v_{1}=m_{11} v_{1}+m_{12} v_{2}$ and $M v_{2}=m_{21} v_{1}+m_{22} v_{2}$. We are guaranteed that $\operatorname{anti}\left(V^{\otimes 2}\right)$ is one-dimensional, and that it is spanned by $\varphi=\left(v_{1} \otimes v_{2}\right)-\left(v_{2} \otimes v_{1}\right)$, so that $M \varphi$ is a multiple of $\varphi$. Compute this multiple, i.e., the determinant, by computing $M \varphi$.

## Q3. Another finite field example

Recall that $\mathbb{Z}_{2}$ is the field containing $\{0,1\}$, with addition and multiplication defined (mod 2). Consider the polynomial $x^{4}+x+1=0$. This has no solutions in $\mathbb{Z}_{2}$, so let's add a formal quantity $\xi$ for which $\xi^{4}+\xi+1=0$ (and which satisfies the associative, commutative, and distributive laws for addition and multiplication with itself and with $\{0,1\}$ ), and see whether it generates a field.

Using $\xi^{4}+\xi+1=0$, express $\xi^{r}$ in terms of $1, \xi, \xi^{2}$, and $\xi^{3}$ for $r=1, \ldots, 15$.

