Linear Systems, Black Boxes, and Beyond

Homework #1 (2018-2019), Answers

Q1: Impulse responses and transfer functions

A. Exponential decay: For a system F with impulse response $f(t) = \begin{cases} \lambda e^{-\lambda t}, t \ge 0\\ 0, t < 0 \end{cases}$, find the transfer function $\hat{f}(\omega)$

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega t} f(t) dt = \int_{0}^{\infty} e^{-i\omega t} \lambda e^{-\lambda t} dt = \lambda \int_{0}^{\infty} e^{-(i\omega + \lambda)t} dt$$
$$= -\left(\frac{\lambda}{i\omega + \lambda}\right) e^{-(i\omega + \lambda)t} \Big|_{0}^{\infty} = \frac{\lambda}{i\omega + \lambda} = \frac{1}{1 + i\omega / \lambda}$$

B. Boxcar average: For a system B_h with impulse response $b_h(t) = \begin{cases} \frac{1}{h}, tin[0,h] \\ 0, otherwise \end{cases}$, find the transfer function

 $\hat{b}_h(\omega).$

$$\hat{b}_h(\omega) = \int_{-\infty}^{\infty} e^{-i\omega t} b_h(t) dt = \frac{1}{h} \int_{0}^{h} e^{-i\omega t} dt = -\frac{1}{i\omega h} e^{-i\omega t} \Big|_{0}^{h} = \frac{1 - e^{-i\omega h}}{i\omega h}.$$

It can be useful to rewrite this as follows, to separate the phase and amplitude:

$$\hat{b}_{h}(\omega) = \frac{1 - e^{-i\omega h}}{i\omega h} = \frac{e^{-i\omega h/2}}{i\omega h} \left(e^{i\omega h/2} - e^{-i\omega h/2} \right) = \frac{e^{-i\omega h/2}}{\omega h/2} \left(\frac{e^{i\omega h/2} - e^{-i\omega h/2}}{2i} \right), \text{ where the "sinc" function is defined by}$$
$$= e^{-i\omega h/2} \frac{\sin(\omega h/2)}{\omega h/2} = e^{-i\omega h/2} \operatorname{sinc}(\omega h/2)$$

 $\operatorname{sinc}(u) = \frac{\sin u}{u}$. Note that $\operatorname{sinc}(0) = 1$ and the sinc function has zeros at $u = \pm n\pi$, for nonzero *n*. This means that the "boxcar" average is insensitive to input components that repeats an integer number of times in the averaging interval *h*.

C. Pure delay: For a system F_T with impulse response $f_T(t) = \delta(t-T)$, find the transfer function $\hat{f}_T(\omega)$. $\hat{f}_T(\omega) = \int_{-\infty}^{\infty} e^{-i\omega t} f_T(t) dt = \int_{0}^{\infty} e^{-i\omega t} \delta(t-T) dt = e^{-i\omega T}$

D. Differentiation: Consider a system F_{diff} whose output is the derivative of the input. We can't write an impulse response for this system in a straightforward way, because the derivative of a delta-function is not defined. But we can determine its transfer function, by considering its response to sinusoids $e^{i\omega t}$. What is its transfer function $\hat{f}_{diff}(\omega)$?

$$F_{diff}$$
 takes $e^{i\omega t}$ into $\frac{d}{dt}e^{i\omega t} = i\omega e^{i\omega t}$. So F_{diff} multiplies $e^{i\omega t}$ by $i\omega$. Therefore, $\hat{f}_{diff}(\omega) = i\omega$.

Note that $F_{diff} = \lim_{T \to 0} \frac{f_0 - f_T}{T}$ (the definition of the derivative). Correspondingly,

$$\lim_{T \to 0} \frac{\hat{f}_{0}(\omega) - \hat{f}_{T}(\omega)}{T} = \lim_{T \to 0} \frac{1 - e^{-i\omega T}}{T} = \lim_{T \to 0} \frac{1 - (1 - i\omega T)}{T} = \lim_{T \to 0} \frac{i\omega T}{T} = i\omega = \hat{f}_{diff}(\omega)$$

Q2: Biased diffusion

In the notes, we modeled diffusion as a random walk from x = 0 to $x = \pm b$, with equal probability, in time ΔT . That is, $F_{\Delta T}(x) = \frac{1}{2} (\delta(x-b) + \delta(x+b))$. We saw that this had a stable limit as $\Delta T \to 0$ if $b^2 = A\Delta T$, i.e., $b = \sqrt{A\Delta T}$.

Now consider a biased process, in which the probability of a step to +b is $\frac{1}{2}(1+\alpha)$ and the probability of a step to -b is $\frac{1}{2}(1-\alpha)$. So now, $F_{\Delta T}(x) = \frac{1}{2}((1+\alpha)\delta(x-b) + (1-\alpha)\delta(x+b))$. A. Determine $\hat{F}_{\Delta T}(\omega)$.

$$\hat{F}_{\Delta T}(\omega) = \int_{-\infty}^{\infty} F_{\Delta T}(x)e^{-i\omega x}dx = \frac{1}{2}\int_{-\infty}^{\infty} \left((1+\alpha)\delta(x-b) + (1+\alpha)\delta(x+b)\right)e^{-i\omega x}dx$$
$$= \frac{1}{2}\int_{-\infty}^{\infty} \left(\delta(x-b) + \delta(x+b)\right)e^{-i\omega x}dx + \frac{\alpha}{2}\int_{-\infty}^{\infty} \left(\delta(x-b) - \delta(x+b)\right)e^{-i\omega x}dx$$
$$= \frac{1}{2}\left(e^{-i\omega b} + e^{i\omega b}\right) + \frac{\alpha}{2}\left(e^{-i\omega b} - e^{i\omega b}\right) = \cos(\omega b) - i\alpha\sin(\omega b)$$

B. How should α vary with ΔT to ensure a stable limit for $\hat{F}_T(\omega) = \lim_{\Delta T \to 0} \left(\hat{F}_{\Delta T}(\omega) \right)^{T/\Delta T}$ as $\Delta T \to 0$, and what is this limit?

For small b

$$\hat{F}_{\Delta T}(\omega) = \cos(\omega b) - i\alpha \sin(\omega b) \approx 1 - \frac{1}{2}b^2\omega^2 - i\alpha\omega b \approx e^{-\frac{1}{2}b^2\omega^2 - i\alpha\omega b}.$$

So

$$\left(\hat{F}_{\Delta T}(\omega)\right)^{T/\Delta T} \approx e^{\left(-\frac{1}{2}b^2\omega^2 - i\alpha\omega b\right)\frac{T}{\Delta T}}.$$

We need $b^2 / \Delta T$ and $\alpha b / \Delta T$ to have a stable limit as $\Delta T \to 0$. So $b^2 / \Delta T = A$ implies $b = \sqrt{A\Delta T}$, and $\alpha b / \Delta T = h$ implies $\alpha = h\Delta T / b = \frac{h\Delta T}{\sqrt{A\Delta T}} = h\sqrt{\frac{\Delta T}{A}}$. So $\hat{F}_T(\omega) = \lim_{\Delta T \to 0} \left(\hat{F}_{\Delta T}(\omega)\right)^{T/\Delta T} = e^{\left[-\frac{1}{2}b^2\omega^2 - i\alpha\omega b\right]\frac{T}{\Delta T}} = e^{-\omega^2 AT/2 - i\omega\alpha bT/\Delta T} = e^{-\omega^2 AT/2 - i\omega\alpha hT}$

C. If, at time 0, the distribution is $p_0(x) = \delta(x)$, what is the distribution $p_T(x)$ at time T? $\hat{p}_T(\omega) = \hat{F}_T(\omega)\hat{p}(0)$, and since $p_0(x) = \delta(x)$, $\hat{p}(0) = 1$. So $\hat{p}_T(\omega) = \hat{F}_T(\omega) = e^{-\omega^2 AT/2 + i\omega hT}$. Inverting the transform,

$$p_T(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{p}_T(\omega) e^{i\omega x} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\omega^2 AT/2 - i\omega hT} e^{i\omega x} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\omega^2 AT/2} e^{i\omega(x-hT)} d\omega.$$

The final integral is the same as the one that arose for unbiased diffusion (notes), but with x - hT replacing x.

So $p_T(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{p}_T(\omega) e^{i\omega x} d\omega = \frac{1}{\sqrt{2\pi AT}} e^{-(x-hT)^2/2AT}$, a Gaussian centered at x = hT whose variance is \sqrt{AT} .

Not surprisingly, when the probabilities of leftward and rightward steps are unequal, the distribution drifts by an amount proportional to time. Drift and broadening of the distribution do not interact.