Linear Systems, Black Boxes, and Beyond
Homework \#1 (2018-2019), Answers
Q1: Impulse responses and transfer functions
A. Exponential decay: For a system F with impulse response $f(t)=\left\{\begin{array}{c}\lambda e^{-\lambda t}, t \geq 0 \\ 0, t<0\end{array}\right.$, find the transfer function $\hat{f}(\omega)$.
$\hat{f}(\omega)=\int_{-\infty}^{\infty} e^{-i \omega t} f(t) d t=\int_{0}^{\infty} e^{-i \omega t} \lambda e^{-\lambda t} d t=\lambda \int_{0}^{\infty} e^{-(i \omega+\lambda) t} d t$
$=-\left.\left(\frac{\lambda}{i \omega+\lambda}\right) e^{-(i \omega+\lambda) t}\right|_{0} ^{\infty}=\frac{\lambda}{i \omega+\lambda}=\frac{1}{1+i \omega / \lambda}$
B. Boxcar average: For a system B_{h} with impulse response $b_{h}(t)=\left\{\begin{array}{l}\frac{1}{h} \text {, tin }[0, h] \\ 0, \text { otherwise }\end{array}\right.$, find the transfer function $\hat{b}_{h}(\omega)$.
$\hat{b}_{h}(\omega)=\int_{-\infty}^{\infty} e^{-i \omega t} b_{h}(t) d t=\frac{1}{h} \int_{0}^{h} e^{-i \omega t} d t=-\left.\frac{1}{i \omega h} e^{-i \omega t}\right|_{0} ^{h}=\frac{1-e^{-i \omega h}}{i \omega h}$.
It can be useful to rewrite this as follows, to separate the phase and amplitude:
$\hat{b}_{h}(\omega)=\frac{1-e^{-i \omega h}}{i \omega h}=\frac{e^{-i \omega h / 2}}{i \omega h}\left(e^{i \omega h / 2}-e^{-i \omega h / 2}\right)=\frac{e^{-i \omega h / 2}}{\omega h / 2}\left(\frac{e^{i \omega h / 2}-e^{-i \omega h / 2}}{2 i}\right)$, where the "sinc" function is defined by $=e^{-i \omega h / 2} \frac{\sin (\omega h / 2)}{\omega h / 2}=e^{-i \omega h / 2} \operatorname{sinc}(\omega h / 2)$
$\operatorname{sinc}(u)=\frac{\sin u}{u}$. Note that $\operatorname{sinc}(0)=1$ and the sinc function has zeros at $u= \pm n \pi$, for nonzero n. This means that the "boxcar" average is insensitive to input components that repeats an integer number of times in the averaging interval h.
C. Pure delay: For a system F_{T} with impulse response $f_{T}(t)=\delta(t-T)$, find the transfer function $\hat{f}_{T}(\omega)$.

$$
\hat{f}_{T}(\omega)=\int_{-\infty}^{\infty} e^{-i \omega t} f_{T}(t) d t=\int_{0}^{\infty} e^{-i \omega t} \delta(t-T) d t=e^{-i \omega T}
$$

D. Differentiation: Consider a system $F_{\text {diff }}$ whose output is the derivative of the input. We can't write an impulse response for this system in a straightforward way, because the derivative of a delta-function is not defined. But we can determine its transfer function, by considering its response to sinusoids $e^{i \omega t}$. What is its transfer function $\hat{f}_{\text {diff }}(\omega)$?
$F_{\text {diff }}$ takes $e^{i \omega t}$ into $\frac{d}{d t} e^{i \omega t}=i \omega e^{i \omega t}$. So $F_{\text {diff }}$ multiplies $e^{i \omega t}$ by $i \omega$. Therefore, $\hat{f}_{\text {diff }}(\omega)=i \omega$.

Note that $F_{\text {diff }}=\lim _{T \rightarrow 0} \frac{f_{0}-f_{T}}{T}$ (the definition of the derivative). Correspondingly,
$\lim _{T \rightarrow 0} \frac{\hat{f}_{0}(\omega)-\hat{f}_{T}(\omega)}{T}=\lim _{T \rightarrow 0} \frac{1-e^{-i \omega T}}{T}=\lim _{T \rightarrow 0} \frac{1-(1-i \omega T)}{T}=\lim _{T \rightarrow 0} \frac{i \omega T}{T}=i \omega=\hat{f}_{\text {diff }}(\omega)$

Q2: Biased diffusion

In the notes, we modeled diffusion as a random walk from $x=0$ to $x= \pm b$, with equal probability, in time ΔT. That is, $F_{\Delta T}(x)=\frac{1}{2}(\delta(x-b)+\delta(x+b))$. We saw that this had a stable limit as $\Delta T \rightarrow 0$ if $b^{2}=A \Delta T$, i.e., $b=\sqrt{A \Delta T}$.

Now consider a biased process, in which the probability of a step to $+b$ is $\frac{1}{2}(1+\alpha)$ and the probability of a step to $-b$ is $\frac{1}{2}(1-\alpha)$.So now, $F_{\Delta T}(x)=\frac{1}{2}((1+\alpha) \delta(x-b)+(1-\alpha) \delta(x+b))$.
A. Determine $\hat{F}_{\Delta T}(\omega)$.

$$
\begin{aligned}
& \hat{F}_{\Delta T}(\omega)=\int_{-\infty}^{\infty} F_{\Delta T}(x) e^{-i \omega x} d x=\frac{1}{2} \int_{-\infty}^{\infty}((1+\alpha) \delta(x-b)+(1+\alpha) \delta(x+b)) e^{-i \omega x} d x \\
& =\frac{1}{2} \int_{-\infty}^{\infty}(\delta(x-b)+\delta(x+b)) e^{-i \omega x} d x+\frac{\alpha}{2} \int_{-\infty}^{\infty}(\delta(x-b)-\delta(x+b)) e^{-i \omega x} d x \\
& =\frac{1}{2}\left(e^{-i \omega b}+e^{i \omega b}\right)+\frac{\alpha}{2}\left(e^{-i \omega b}-e^{i \omega b}\right)=\cos (\omega b)-i \alpha \sin (\omega b)
\end{aligned}
$$

B. How should α vary with ΔT to ensure a stable limit for $\hat{F}_{T}(\omega)=\lim _{\Delta T \rightarrow 0}\left(\hat{F}_{\Delta T}(\omega)\right)^{T / \Delta T}$ as $\Delta T \rightarrow 0$, and what is this limit?

For small b
$\hat{F}_{\Delta T}(\omega)=\cos (\omega b)-i \alpha \sin (\omega b) \approx 1-\frac{1}{2} b^{2} \omega^{2}-i \alpha \omega b \approx e^{-\frac{1}{2} b^{2} \omega^{2}-i \alpha \omega b}$.
So
$\left(\hat{F}_{\Delta T}(\omega)\right)^{T / \Delta T} \approx e^{\left(-\frac{1}{2} b^{2} \omega^{2}-i \alpha \omega b\right) \frac{T}{\Delta T}}$.
We need $b^{2} / \Delta T$ and $\alpha b / \Delta T$ to have a stable limit as $\Delta T \rightarrow 0$. So $b^{2} / \Delta T=A$ implies $b=\sqrt{A \Delta T}$, and $\alpha b / \Delta T=h$ implies $\alpha=h \Delta T / b=\frac{h \Delta T}{\sqrt{A \Delta T}}=h \sqrt{\frac{\Delta T}{A}}$.
So $\hat{F}_{T}(\omega)=\lim _{\Delta T \rightarrow 0}\left(\hat{F}_{\Delta T}(\omega)\right)^{T / \Delta T}=e^{\left(-\frac{1}{2} b^{2} \omega^{2}-i \alpha \omega b\right) \frac{T}{\Delta T}}=e^{-\omega^{2} A T / 2-i \omega \alpha b T / \Delta T}=e^{-\omega^{2} A T / 2-i \omega h T}$
C. If, at time 0 , the distribution is $p_{0}(x)=\delta(x)$, what is the distribution $p_{T}(x)$ at time T ?
$\hat{p}_{T}(\omega)=\hat{F}_{T}(\omega) \hat{p}(0)$, and since $p_{0}(x)=\delta(x), \hat{p}(0)=1$. So $\hat{p}_{T}(\omega)=\hat{F}_{T}(\omega)=e^{-\omega^{2} A T / 2+i \omega h T}$. Inverting the transform,
$p_{T}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{p}_{T}(\omega) e^{i \omega x} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\omega^{2} A T / 2-i \omega h T} e^{i \omega x} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\omega^{2} A T / 2} e^{i \omega(x-h T)} d \omega$.
The final integral is the same as the one that arose for unbiased diffusion (notes), but with $x-h T$ replacing x. So $p_{T}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{p}_{T}(\omega) e^{i \omega x} d \omega=\frac{1}{\sqrt{2 \pi A T}} e^{-(x-h T)^{2} / 2 A T}$, a Gaussian centered at $x=h T$ whose variance is $\sqrt{A T}$. Not surprisingly, when the probabilities of leftward and rightward steps are unequal, the distribution drifts by an amount proportional to time. Drift and broadening of the distribution do not interact.

