Linear Transformations and Group Representations

Homework #1 (2018-2019), Answers

Q1: Eigenvectors and eigenvalues of time-translation

A. Consider two vectors c_{ω} and s_{ω} defined by $c_{\omega}(t) = \cos(\omega t)$ and $s_{\omega}(t) = \sin(\omega t)$, and the vector space V_{ω} that they span. As before, define $(D_T v)(t) = v(t+T)$. Show that $D_T c_{\omega}$ and $D_T s_{\omega}$ are in V_{ω} by displaying $D_T c_{\omega}$ and $D_T s_{\omega}$ as linear combinations of c_{ω} and s_{ω} .

$$(D_T c_{\omega})(t) = c_{\omega}(t+T) = \cos(\omega(t+T)) = \cos\omega T \cos\omega t - \sin\omega T \sin\omega t = (\cos\omega T)c_{\omega}(t) - (\sin\omega T)s_{\omega}(t)$$

so
$$D_T c_{\omega} = (\cos\omega T)c_{\omega} - (\sin\omega T)s_{\omega} .$$

Similarly, $(D_T s_{\omega})(t) = s_{\omega}(t+T) = \sin(\omega(t+T)) = \sin\omega T \cos\omega t + \cos\omega T \sin\omega t = (\sin\omega T)c_{\omega}(t) + (\cos\omega T)s_{\omega}(t),$ so $D_T s_{\omega} = (\sin\omega T)c_{\omega} + (\cos\omega T)s_{\omega}.$

B. Express D_T as a 2×2 matrix, using c_{ω} and s_{ω} as a basis.

From Part A,

$$D_T c_\omega = (\cos \omega T) c_\omega - (\sin \omega T) s_\omega$$
, so
 $D_T s_\omega = (\sin \omega T) c_\omega + (\cos \omega T) s_\omega$, so
 $D_T \begin{pmatrix} c_\omega \\ s_\omega \end{pmatrix} = \begin{pmatrix} \cos \omega T & -\sin \omega T \\ \sin \omega T & \cos \omega T \end{pmatrix} \begin{pmatrix} c_\omega \\ s_\omega \end{pmatrix}$.

C. Write the characteristic equation for the 2×2 matrix in part B.

The characteristic equation for $D_T = \begin{pmatrix} \cos \omega T & -\sin \omega T \\ \sin \omega T & \cos \omega T \end{pmatrix}$ is $\det(zI - D_T) = 0$. $\det(zI - D_T) = \det \begin{pmatrix} z - \cos \omega T & \sin \omega T \\ -\sin \omega T & z - \cos \omega T \end{pmatrix} = (z - \cos \omega T)^2 - (\sin \omega T)(-\sin \omega T)$ $= z^2 - 2\cos \omega T + (\cos \omega T)^2 + (\sin \omega T)^2$, so the characteristic $= z^2 - 2\cos \omega T + 1$ equation is $z^2 - 2\cos \omega T + 1 = 0$.

D. Solve the characteristic equation in Part C to determine the eigenvalues of D_T in V_{ω} . Using the quadratic formula, $z^2 - 2\cos\omega T + 1 = 0$ solves for

$$z = \frac{2\cos\omega T \pm \sqrt{4\cos^2\omega T - 4}}{2} = \cos\omega T \pm \sqrt{\cos^2\omega T - 1} = \cos\omega T \pm i\sqrt{1 - \cos^2\omega T}$$
, where the last step is justified because $\cos^2\omega T - 1 \le 0$. So
$$z = \cos\omega T \pm i\sqrt{1 - \cos^2\omega T} = \cos\omega T \pm i\sin\omega T = e^{\pm i\omega T}.$$

E. Show that $c_{\omega} \pm is_{\omega}$ are eigenvectors of D_T .

Using Part A, $D_T(c_{\omega} + is_{\omega}) = D_T(c_{\omega}) + iD_T(s_{\omega}) = ((\cos \omega T)c_{\omega} - (\sin \omega T)s_{\omega}) + i((\sin \omega T)c_{\omega} + (\cos \omega T)s_{\omega}).$ Collecting terms, $((\cos \omega T)c_{\omega} - (\sin \omega T)s_{\omega}) + i((\sin \omega T)c_{\omega} + (\cos \omega T)s_{\omega}) =$ $(\cos \omega T + i\sin \omega T)c_{\omega} + (-\sin \omega T + i\cos \omega T)s_{\omega} =$ $(\cos \omega T + i\sin \omega T)c_{\omega} + (i\sin \omega T + \cos \omega T)is_{\omega} =$ $(\cos \omega T + i\sin \omega T)(c_{\omega} + is_{\omega}) = e^{i\omega T}(c_{\omega} + is_{\omega})$ So $D_T(c_{\omega} + is_{\omega}) = e^{i\omega T}(c_{\omega} + is_{\omega})$, as required. Similarly, $D_T(c_{\omega} - is_{\omega}) = e^{-i\omega T}(c_{\omega} - is_{\omega})$. We didn't have to check this, since the assignment of i vs. -i is arbitrary (i.e., complex-conjugation is an automorphism), and this switch leaves D_T invariant.

Q2: Eigenvectors and eigenvalues of the derivative

A. Setup is the same as Q1, but with the transformation Bv defined by (Bv)(t) = v'(t), i.e., the derivative, rather than D_T . Display Bc_{ω} and Bs_{ω} as linear combinations of c_{ω} and s_{ω} .

$$(Bc_{\omega})(t) = \frac{d}{dt}(\cos \omega t) = -\omega \sin \omega t = -\omega s_{\omega}(t)$$

$$(Bs_{\omega})(t) = \frac{d}{dt}(\sin \omega t) = \cos \omega t = \omega c_{\omega}(t) .$$

B. Express B as a 2×2 matrix, using c_{ω} and s_{ω} as a basis.

From Part A,

 $B\begin{pmatrix} c_{\omega}\\ s_{\omega} \end{pmatrix} = \begin{pmatrix} 0 & -\omega\\ \omega & 0 \end{pmatrix} \begin{pmatrix} c_{\omega}\\ s_{\omega} \end{pmatrix}.$

C. Write the characteristic equation for the 2×2 matrix in part B. The characteristic equation for $B = \begin{pmatrix} 0 & -\omega \\ \omega & 0 \end{pmatrix}$ is det(zI - B) = 0.

 $\det(zI - B) = \det\begin{pmatrix}z & \omega\\-\omega & z\end{pmatrix} = z^2 + \omega^2, \text{ so the characteristic equation is } z^2 + \omega^2 = 0.$

D. Solve the characteristic equation in Part C to determine the eigenvalues of B in V_{ω} . $z^2 + \omega^2 = 0$ solves for $z = \pm i\omega$. E. Show that $c_{\omega} \pm is_{\omega}$ are eigenvectors of B. Using Part A, $B(c_{\omega} + is_{\omega}) = B(c_{\omega}) + iB(s_{\omega}) = (-\omega s_{\omega}) + i(\omega c_{\omega}) = i\omega(c_{\omega} + is_{\omega})$. So $B(c_{\omega} + is_{\omega}) = i\omega(c_{\omega} + is_{\omega})$, as required. Similarly, $B(c_{\omega} - is_{\omega}) = -i\omega(c_{\omega} - is_{\omega})$.