Linear Transformations and Group Representations

Homework \#1 (2018-2019), Answers

Q1: Eigenvectors and eigenvalues of time-translation

A. Consider two vectors c_{ω} and s_{ω} defined by $c_{\omega}(t)=\cos (\omega t)$ and $s_{\omega}(t)=\sin (\omega t)$, and the vector space V_{ω} that they span. As before, define $\left(D_{T} v\right)(t)=v(t+T)$. Show that $D_{T} c_{\omega}$ and $D_{T} s_{\omega}$ are in V_{ω} by displaying $D_{T} c_{\omega}$ and $D_{T} s_{\omega}$ as linear combinations of c_{ω} and s_{ω}.
$\left(D_{T} c_{\omega}\right)(t)=c_{\omega}(t+T)=\cos (\omega(t+T))=\cos \omega T \cos \omega t-\sin \omega T \sin \omega t=(\cos \omega T) c_{\omega}(t)-(\sin \omega T) s_{\omega}(t)$
so
$D_{T} c_{\omega}=(\cos \omega T) c_{\omega}-(\sin \omega T) s_{\omega}$.

Similarly,
$\left(D_{T} s_{\omega}\right)(t)=s_{\omega}(t+T)=\sin (\omega(t+T))=\sin \omega T \cos \omega t+\cos \omega T \sin \omega t=(\sin \omega T) c_{\omega}(t)+(\cos \omega T) \mathrm{s}_{\omega}(t)$,
so
$D_{T} s_{\omega}=(\sin \omega T) c_{\omega}+(\cos \omega T) s_{\omega}$.
B. Express D_{T} as a 2×2 matrix, using c_{ω} and s_{ω} as a basis.

From Part A,
$D_{T} c_{\omega}=(\cos \omega T) c_{\omega}-(\sin \omega T) s_{\omega}$, so
$D_{T} s_{\omega}=(\sin \omega T) c_{\omega}+(\cos \omega T) s_{\omega}$, so
$D_{T}\binom{c_{\omega}}{s_{\omega}}=\left(\begin{array}{cc}\cos \omega T & -\sin \omega T \\ \sin \omega T & \cos \omega T\end{array}\right)\binom{c_{\omega}}{s_{\omega}}$.
C. Write the characteristic equation for the 2×2 matrix in part B.

The characteristic equation for $D_{T}=\left(\begin{array}{cc}\cos \omega T & -\sin \omega T \\ \sin \omega T & \cos \omega T\end{array}\right)$ is $\operatorname{det}\left(z I-D_{T}\right)=0$.
$\operatorname{det}\left(z I-D_{T}\right)=\operatorname{det}\left(\begin{array}{cc}z-\cos \omega T & \sin \omega T \\ -\sin \omega T & z-\cos \omega T\end{array}\right)=(z-\cos \omega T)^{2}-(\sin \omega T)(-\sin \omega T)$
$=z^{2}-2 \cos \omega T+(\cos \omega T)^{2}+(\sin \omega T)^{2} \quad$, so the characteristic
$=z^{2}-2 \cos \omega T+1$
equation is $z^{2}-2 \cos \omega T+1=0$.
D. Solve the characteristic equation in Part C to determine the eigenvalues of D_{T} in V_{ω}.

Using the quadratic formula, $z^{2}-2 \cos \omega T+1=0$ solves for
$z=\frac{2 \cos \omega T \pm \sqrt{4 \cos ^{2} \omega T-4}}{2}=\cos \omega T \pm \sqrt{\cos ^{2} \omega T-1}=\cos \omega T \pm i \sqrt{1-\cos ^{2} \omega T}$, where the last step is justified because $\cos ^{2} \omega T-1 \leq 0$. So
$z=\cos \omega T \pm i \sqrt{1-\cos ^{2} \omega T}=\cos \omega T \pm i \sin \omega T=e^{ \pm i \omega T}$.
E. Show that $c_{\omega} \pm i s_{\omega}$ are eigenvectors of D_{T}.
Using Part A,
$D_{T}\left(c_{\omega}+i s_{\omega}\right)=D_{T}\left(c_{\omega}\right)+i D_{T}\left(s_{\omega}\right)=\left((\cos \omega T) c_{\omega}-(\sin \omega T) s_{\omega}\right)+i\left((\sin \omega T) c_{\omega}+(\cos \omega T) s_{\omega}\right)$.
Collecting terms,
$\left((\cos \omega T) c_{\omega}-(\sin \omega T) s_{\omega}\right)+i\left((\sin \omega T) c_{\omega}+(\cos \omega T) s_{\omega}\right)=$
$(\cos \omega T+i \sin \omega T) c_{\omega}+(-\sin \omega T+i \cos \omega T) s_{\omega}=$
$(\cos \omega T+i \sin \omega T) c_{\omega}+(i \sin \omega T+\cos \omega T) i s_{\omega}=$
$(\cos \omega T+i \sin \omega T)\left(c_{\omega}+i s_{\omega}\right)=e^{i \omega T}\left(c_{\omega}+i s_{\omega}\right)$
So $D_{T}\left(c_{\omega}+i s_{\omega}\right)=e^{i \omega T}\left(c_{\omega}+i s_{\omega}\right)$, as required.
Similarly, $D_{T}\left(c_{\omega}-i s_{\omega}\right)=e^{-i \omega T}\left(c_{\omega}-i s_{\omega}\right)$. We didn't have to check this, since the assignment of i vs. $-i$ is arbitrary (i.e., complex-conjugation is an automorphism), and this switch leaves D_{T} invariant.

Q2: Eigenvectors and eigenvalues of the derivative
A. Setup is the same as Q1, but with the transformation $B v$ defined by $(B v)(t)=v^{\prime}(t)$, i.e., the derivative, rather than D_{T}. Display $B c_{\omega}$ and $B s_{\omega}$ as linear combinations of c_{ω} and s_{ω}.
$\left(B c_{\omega}\right)(t)=\frac{d}{d t}(\cos \omega t)=-\omega \sin \omega t=-\omega s_{\omega}(t)$.
$\left(B s_{\omega}\right)(t)=\frac{d}{d t}(\sin \omega t)=\cos \omega t=\omega c_{\omega}(t)$.
B. Express B as a 2×2 matrix, using c_{ω} and s_{ω} as a basis.

From Part A,

$$
B\binom{c_{\omega}}{s_{\omega}}=\left(\begin{array}{cc}
0 & -\omega \\
\omega & 0
\end{array}\right)\binom{c_{\omega}}{s_{\omega}} .
$$

C. Write the characteristic equation for the 2×2 matrix in part B.

The characteristic equation for $B=\left(\begin{array}{cc}0 & -\omega \\ \omega & 0\end{array}\right)$ is $\operatorname{det}(z I-B)=0$.
$\operatorname{det}(z I-B)=\operatorname{det}\left(\begin{array}{cc}z & \omega \\ -\omega & z\end{array}\right)=z^{2}+\omega^{2}$, so the characteristic equation is $z^{2}+\omega^{2}=0$.
D. Solve the characteristic equation in Part C to determine the eigenvalues of B in V_{ω}.
$z^{2}+\omega^{2}=0$ solves for $z= \pm i \omega$.
E. Show that $c_{\omega} \pm i s_{\omega}$ are eigenvectors of B.

Using Part A, $B\left(c_{\omega}+i s_{\omega}\right)=B\left(c_{\omega}\right)+i B\left(s_{\omega}\right)=\left(-\omega s_{\omega}\right)+i\left(\omega c_{\omega}\right)=i \omega\left(c_{\omega}+i s_{\omega}\right)$.
So $B\left(c_{\omega}+i s_{\omega}\right)=i \omega\left(c_{\omega}+i s_{\omega}\right)$, as required. Similarly, $B\left(c_{\omega}-i s_{\omega}\right)=-i \omega\left(c_{\omega}-i s_{\omega}\right)$.

