Linear Transformations and Group Representations

Homework #1 (2018-2019), Questions

Q1: Eigenvectors and eigenvalues of time-translation

A. Consider two vectors c_{ω} and s_{ω} defined by $c_{\omega}(t) = \cos(\omega t)$ and $s_{\omega}(t) = \sin(\omega t)$, and the vector space V_{ω} that they span. As before, define $(D_T v)(t) = v(t+T)$. Show that $D_T c_{\omega}$ and $D_T s_{\omega}$ are in V_{ω} by displaying $D_T c_{\omega}$ and $D_T s_{\omega}$ as linear combinations of c_{ω} and s_{ω} .

B. Express D_T as a 2×2 matrix, using c_{ω} and s_{ω} as a basis.

C. Write the characteristic equation for the 2×2 matrix in part B.

D. Solve the characteristic equation in Part C to determine the eigenvalues of D_T in V_{ω} .

E. Show that $c_{\omega} \pm i s_{\omega}$ are eigenvectors of D_T .

Q2: Eigenvectors and eigenvalues of the derivative

A. Setup is the same as Q1, but with the transformation Bv defined by (Bv)(t) = v'(t), i.e., the derivative, rather than D_T . Display Bc_{ω} and Bs_{ω} as linear combinations of c_{ω} and s_{ω} .

B. Express B as a 2×2 matrix, using c_{ω} and s_{ω} as a basis.

C. Write the characteristic equation for the 2×2 matrix in part B.

D. Solve the characteristic equation in Part C to determine the eigenvalues of B in V_{ω} .

E. Show that $c_{\omega} \pm i s_{\omega}$ are eigenvectors of B.