Homework \#1 (2018-2019), Questions
Q1: Eigenvectors and eigenvalues of time-translation
A. Consider two vectors c_{ω} and s_{ω} defined by $c_{\omega}(t)=\cos (\omega t)$ and $s_{\omega}(t)=\sin (\omega t)$, and the vector space V_{ω} that they span. As before, define $\left(D_{T} v\right)(t)=v(t+T)$. Show that $D_{T} c_{\omega}$ and $D_{T} s_{\omega}$ are in V_{ω} by displaying $D_{T} c_{\omega}$ and $D_{T} s_{\omega}$ as linear combinations of c_{ω} and s_{ω}.
B. Express D_{T} as a 2×2 matrix, using c_{ω} and s_{ω} as a basis.
C. Write the characteristic equation for the 2×2 matrix in part B .
D. Solve the characteristic equation in Part C to determine the eigenvalues of D_{T} in V_{ω}.
E. Show that $c_{\omega} \pm i s_{\omega}$ are eigenvectors of D_{T}.

Q2: Eigenvectors and eigenvalues of the derivative
A. Setup is the same as Q1, but with the transformation $B v$ defined by $(B v)(t)=v^{\prime}(t)$, i.e., the derivative, rather than D_{T}. Display $B c_{\omega}$ and $B s_{\omega}$ as linear combinations of c_{ω} and s_{ω}.
B. Express B as a 2×2 matrix, using c_{ω} and s_{ω} as a basis.
C. Write the characteristic equation for the 2×2 matrix in part B .
D. Solve the characteristic equation in Part C to determine the eigenvalues of B in V_{ω}.
E. Show that $c_{\omega} \pm i s_{\omega}$ are eigenvectors of B.

