Linear Transformations and Group Representations

Homework #2 (2018-2019), Answers

Q1: Some representations of the "continuous dihedral" group.

Let G be the "continuous dihedral" group, i.e., the group of rotations and reflections of a circle. For definiteness, let R_{θ} be a clockwise rotation by θ , and let M be the reflection in the vertical axis (that sends x to -x and preserves y). The group consists of R_{θ} , M, and all the transformations that can be generated by composing them.

A. Verify geometrically that these group elements satisfy $R_{\theta}R_{\phi} = R_{\theta+\phi}$, $R_{\theta}M = MR_{-\theta}$, and $M^2 = I$ (the identity).

 $R_{\theta}R_{\phi} = R_{\theta+\phi}$: $R_{\theta}R_{\phi}$ is a rotation by an angle ϕ followed by a rotation by an angle θ ; the net result is rotation by the total angle $\theta + \phi$.

 $R_{\theta}M = MR_{-\theta}$: Consider a point on the circle at an angle α from the vertical. Result of applying $R_{\theta}M : M$ moves the point to $-\alpha$; then R_{θ} moves the point to $-\alpha + \theta$. Result of applying $MR_{-\theta} : R_{-\theta}$ moves the point to $\alpha - \theta$; then M moves the point to $-(\alpha - \theta) = -\alpha + \theta$, which is the same as the result for applying $R_{\theta}M$.

 $M^2 = I$: Since M is a mirroring, this is immediate.

B. Show that any element of the group is equal either to R_{ϕ} or $R_{\phi}M$, for some ϕ .

Since $M^2 = I$, any group element can be written $R_{\theta_1}MR_{\theta_2}M...R_{\theta_k}$ or a similar product preceded or followed by M. Using $MR_{\theta} = R_{-\theta}M$, we can move every R from the right side of an M to its left, and then condense the resulting pair of M's, e.g., $R_{\theta_1}MR_{\theta_2}M = R_{\theta_1}R_{-\theta_2}MM = R_{\theta_1-\theta_2}$, resulting in a reduction in the number of M's. Repeating these swaps leads to a group element that is either of the form R_{ϕ} or $R_{\phi}M$, depending on whether the original number of M's was even or odd.

C. Geometrically, what is the transformation $R_{\theta}MR_{\theta}^{-1}$? What is its reduction to the form specified in part **B**?

This is a mirror about a line that is rotated by θ from the vertical. Two ways. (i) One can think of $R_{\theta}MR_{\theta}^{-1}$ as an automorphism of the group, corresponding to a relabeling by rotation. (ii) One can follow a generic point that starts an angle α from the vertical. This point is transformed by R_{θ}^{-1} to $\alpha - \theta$, then by M to $-(\alpha - \theta) = -\alpha + \theta$, and then by R_{θ} to $(-\alpha + \theta) + \theta = -\alpha + 2\theta$. So the starting angle α and the final angle $-\alpha + 2\theta$ are equal distances from θ , as required for a mirror about a lie at an orientation θ .

Reduction via Part B: $R_{\theta}MR_{\theta}^{-1} = R_{\theta}MR_{-\theta} = R_{\theta}R_{\theta}M = R_{2\theta}M$.

D. Write R_{θ} and M as 2×2 matrices, and thereby construct a 2-dimensional unitary representation L of G. Verify the identities of part A algebraically.

$$R_{\theta}: R_{\theta} \text{ takes} \begin{pmatrix} 1\\0 \end{pmatrix}, \text{ on the horizontal axis, to} \begin{pmatrix} \cos\theta\\-\sin\theta \end{pmatrix}, \text{ and} \begin{pmatrix} 0\\1 \end{pmatrix}, \text{ on the vertical axis, to} \begin{pmatrix} \sin\theta\\\cos\theta \end{pmatrix}.$$

$$R_{\theta} = \begin{pmatrix} \cos\theta & \sin\theta\\-\sin\theta & \cos\theta \end{pmatrix}.$$

$$M: M \text{ takes} \begin{pmatrix} 1\\0 \end{pmatrix}, \text{ on the horizontal axis, to} \begin{pmatrix} -1\\0 \end{pmatrix}, \text{ and} \begin{pmatrix} 0\\1 \end{pmatrix}, \text{ on the vertical axis, to itself. So}$$

$$M = \begin{pmatrix} -1 & 0\\0 & 1 \end{pmatrix}.$$

$$\begin{split} R_{\theta}R_{\phi} &= R_{\theta+\phi}:\\ R_{\theta}R_{\phi} &= \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{pmatrix} = \begin{pmatrix} \cos\theta\cos\phi - \sin\theta\sin\phi & \cos\theta\sin\phi + \sin\theta\cos\phi \\ -\sin\theta\cos\phi - \cos\theta\sin\phi & -\sin\theta\sin\phi + \cos\theta\cos\phi \end{pmatrix}\\ &= \begin{pmatrix} \cos(\theta+\phi) & \sin(\theta+\phi) \\ -\sin(\theta+\phi) & -\cos(\theta+\phi) \end{pmatrix} = R_{\theta+\phi} \end{split}$$

$$R_{\theta}M = MR_{-\theta}:$$

$$R_{\theta}M = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} -\cos\theta & \sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}.$$

$$MR_{-\theta} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} -\cos\theta & \sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}.$$

$$M^{2} = I:$$

$$M^{2} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

E. What is the character of R_{θ} , $R_{\theta}M$, and $R_{\theta}MR_{\theta}^{-1}$ in the representation *L*?

$$\begin{split} \chi_L(R_\theta) &= tr(L_{R_\theta}) = tr\begin{pmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{pmatrix} = 2\cos\theta \,.\\ \chi_L(M) &= tr(L_M) = tr\begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} = 0 \,.\\ \chi_L(R_\theta M R_\theta^{-1}) &= tr(L_{R_\theta M R_\theta^{-1}}) = tr(L_{R_\theta} L_M L_{R_\theta^{-1}}) = tr(L_{R_\theta} L_M (L_{R_\theta})^{-1}) = tr(L_M) = 0 \,. \end{split}$$

F. Define $L_{R_{\theta}}^{[n]} = \begin{pmatrix} \cos n\theta & \sin n\theta \\ -\sin n\theta & \cos n\theta \end{pmatrix} = R^{n} = R_{n\theta}$ and $L_{M}^{[n]} = M$ (the latter is independent of n). Show that $L^{[n]}$ is a representation. Note that to do this, it suffices to show that the mapping from group elements to the unitary matrices defined by $L^{[n]}$ will preserve the rules that govern group operations: $R_{\theta}R_{\phi} = R_{\theta+\phi}$, $R_{\theta}M = MR_{-\theta}$, and $M^{2} = I$.

$$\begin{split} L^{[n]}_{R_{\theta}}L^{[n]}_{R_{\phi}} &= R_{n\theta}R_{n\phi} = R_{n(\theta+\phi)} = L^{[n]}_{R_{\theta}R_{\phi}} \\ L^{[n]}_{R_{\theta}}L^{[n]}_{M} &= R_{n\theta}M = MR_{-n\theta} = L^{[n]}_{M}L^{[n]}_{R_{-\theta}} \\ \left(L^{[n]}_{M}\right)^{2} &= M^{2} = I = L^{[n]}_{I}. \end{split}$$

G. Define $S_{R_{\theta}} = 1$ and $S_{M} = -1$. Show S is a one-dimensional representation. Use the strategy in Part F. $S_{R_{\theta}}S_{R_{\phi}} = 1 \cdot 1 = 1$, independent of θ or ϕ . $S_{R_{\theta}}S_{M} = 1 \cdot (-1) = -1$, and $S_{M}S_{R_{-\theta}} = (-1) \cdot 1 = -1$ $(S_{M})^{2} = (-1)^{2} = 1 = S_{I}$.

Q2: Characters of representations of a permutation group.

Let P be the permutation group on three objects. This has six elements.

A. Write each group element as a 3×3 permutation matrix. As discussed, this is a unitary representation, which we can call U. For each of the six permutations σ , determine the character $\chi_U(\sigma)$.

The character, which is the trace, counts the number of 1's on the diagonal, which is also the number of objects that are not affected by the permutation.

Group element σ	1d	enti	ity (AB)	(AC)	(BC	.)	(AB	C) (.	ACI	B)
Permutation matrix U_{σ}	$ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} $	0 1 0	$ \begin{array}{c} 0\\ 0\\ 1\\ \end{array} \right) \begin{pmatrix} 0\\ 1\\ 0\\ \end{array} $	1 0 0	$\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$	$ \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} $	0 1 0	$ \begin{array}{c} 1\\0\\0 \end{array} \left(\begin{array}{c} 1\\0\\0\\0 \end{array}\right) $	0 0 0 1	$ \begin{array}{c} 0\\1\\0 \end{array} $) 0 1 0) 1	$ \begin{array}{c} 1\\0\\0\\ 1 \end{array} $	1 0 0	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$
Character $\chi_U(\sigma) = tr(U_{\sigma})$		3		1			1		1		0		0	

B. Consider the subgroup of G generated by R_{θ} and M, where θ is restricted to $0, 2\pi/3$, and $4\pi/3$. Show that this is the permutation group on 3 objects.

Each of these group operations map the 3 points of an equilateral triangle with vertices at angles $0, 2\pi/3$, and $4\pi/3$ to itself (say, A, B, and C). $R_{\frac{2\pi}{3}}$ corresponds to the permutation (ABC) and *M* corresponds to the permutation (BC). Products of *M* and $R_{\frac{2\pi}{3}}$ generate the remaining permutations.

C. Restricting the group representation L of Question 1 (parts D and E) to the subgroup in part B yields a 2-dimensional unitary representation of P. Determine its character for the six group elements of P.

We read off these values from Question 1 part E:

Group element σ	identity	(AB)	(AC)	(BC)	(ABC)	(ACB)
Equivalent in G	Ι	$R_{\underline{4\pi}}MR_{\underline{4\pi}}^{-1}$	$R_{\underline{2\pi}}MR_{\underline{2\pi}}^{-1}$	М	$R_{\frac{2\pi}{3}}$	$R_{\frac{4\pi}{3}}$
Character $\chi_L(\sigma) = tr(L_{\sigma})$	2	0	0	0	-1	-1

D. Restricting the group representation S of Question 1 (part G) to the subgroup in part B yields a 1dimensional unitary representation of P. Determine its character for the six group elements of P.

We read off these values from Question 1 part G:

Group element σ	identity	(AB)	(AC)	(BC)	(ABC)	(ACB)
Equivalent in G	Ι	$R_{\underline{4\pi}}MR_{\underline{4\pi}}^{-1}$	$R_{\underline{2\pi}}MR_{\underline{2\pi}}^{-1}$	М	$R_{\underline{2\pi}}$	$R_{\underline{4\pi}}$
Character $\chi_s(\sigma) = tr(S_{\sigma})$	1	-1	-1	-1	1	1

For further discussion in class, we collect these representations into a table, along with the trivial representation:

Group element σ	identity		ty ((AB)		(AC)		(BC)		(ABC)		(ACB)	
Permutation matrix U_{σ}	$ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} $	0 1 0	$ \begin{array}{c} 0\\ 0\\ 1 \end{array} \left(\begin{array}{c} 0\\ 1\\ 0 \end{array} \right) $	1 0 0	$ \begin{array}{c} 0\\ 0\\ 1 \end{array} \left(\begin{array}{c} 0\\ 0\\ 1 \end{array} \right) $	0 1 0	$ \begin{array}{c} 1\\0\\0 \end{array} \left(\begin{array}{c} 1\\0\\0\\0 \end{array}\right) $	0 0 1	$ \begin{array}{c} 0\\1\\0 \end{array} \left(\begin{matrix} 0\\1\\0 \end{matrix} \right) $	0 0 1	$ \begin{array}{c} 1\\0\\0\\ 1 \end{array} $	1 0 0	$\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$
Permutation rep: $\chi_U(\sigma)$		3		1		1		1		0		0	
2-d rep from $G: \chi_L(\sigma)$		2		0		0		0		-1		-1	
1-d rep from $G: \chi_{s}(\sigma)$		1		-1		-1		-1		1		1	
trivial rep: $\chi_I(\sigma)$		1		1		1		1		1		1	

Note that $\chi_U = \chi_L + \chi_I$. Note also that $\sum_{\sigma \in P} |\chi_L(\sigma)|^2 = \sum_{\sigma \in P} |\chi_S(\sigma)|^2 = \sum_{\sigma \in P} |\chi_I(\sigma)|^2 = 6$ but that $\sum_{\sigma \in P} |\chi_U(\sigma)|^2 = 12$. And note that $\sum_{\sigma \in P} \chi_L(\sigma) \overline{\chi_S(\sigma)} = \sum_{\sigma \in P} \chi_L(\sigma) \overline{\chi_I(\sigma)} = \sum_{\sigma \in P} \chi_S(\sigma) \overline{\chi_I(\sigma)} = 0$.