Linear Transformations and Group Representations

Homework #2 (2018-2019), Questions

Q1: Some representations of the "continuous dihedral" group.

Let *G* be the "continuous dihedral" group, i.e., the group of rotations and reflections of a circle. For definiteness, let R_{θ} be a clockwise rotation by θ , and let *M* be the reflection in the vertical axis (that sends *x* to -x and preserves *y*). The group consists of R_{θ} , *M*, and all the transformations that can be generated by composing them.

A. Verify geometrically that these group elements satisfy $R_{\theta}R_{\phi} = R_{\theta+\phi}$, $R_{\theta}M = MR_{-\theta}$, and $M^2 = I$ (the identity).

B. Show that any element of the group is equal either to R_{ϕ} or $R_{\phi}M$, for some ϕ .

C. Geometrically, what is the transformation $R_{\theta}MR_{\theta}^{-1}$? What is its reduction to the form specified in part B?

D. Write R_{θ} and M as 2×2 matrices, and thereby construct a 2-dimensional unitary representation L of G. Verify the identities of part A algebraically.

E. What is the character of R_{θ} , $R_{\theta}M$, and $R_{\theta}MR_{\theta}^{-1}$ in the representation L?

F. Define $L_{R_{\theta}}^{[n]} = \begin{pmatrix} \cos n\theta & -\sin n\theta \\ \sin n\theta & \cos n\theta \end{pmatrix} = R^{n} = R_{n\theta}$ and $L_{M}^{[n]} = M$ (the latter is independent of *n*). Show that $L^{[n]}$ is a representation. Note that to do this, it suffices to show that the mapping from group elements to the unitary matrices defined by $L^{[n]}$ will preserve the rules that govern group operations: $R_{\theta}R_{\phi} = R_{\theta+\phi}$,

 $R_{\theta}M = MR_{-\theta}$, and $M^2 = I$.

G. Define $S_{R_{\theta}} = 1$ and $S_M = -1$. Show S is a one-dimensional representation.

Q2: Characters of representations of a permutation group.

Let P be the permutation group on three objects. This has six elements.

A. Write each group element as a 3×3 permutation matrix. As discussed, this is a unitary representation, which we can call U. For each of the six permutations σ , determine the character $\chi_U(\sigma)$.

B. Consider the subgroup of G generated by R_{θ} and M, where θ is restricted to $0, 2\pi/3$, and $4\pi/3$. Show that this is the permutation group on 3 objects.

C. Restricting the group representation L of Question 1 (parts D and E) to the subgroup in part B yields a 2-dimensional unitary representation of P. Determine its character for the six group elements of P.

D. Restricting the group representation S of Question 1 (part G) to the subgroup in part B yields a 1dimensional unitary representation of P. Determine its character for the six group elements of P.