Linear Transformations and Group Representations

Homework \#2 (2018-2019), Questions
Q1: Some representations of the "continuous dihedral" group.
Let G be the "continuous dihedral" group , i.e., the group of rotations and reflections of a circle. For definiteness, let R_{θ} be a clockwise rotation by θ, and let M be the reflection in the vertical axis (that sends x to $-x$ and preserves y). The group consists of R_{θ}, M, and all the transformations that can be generated by composing them.
A. Verify geometrically that these group elements satisfy $R_{\theta} R_{\phi}=R_{\theta+\phi}, R_{\theta} M=M R_{-\theta}$, and $M^{2}=I$ (the identity).
B. Show that any element of the group is equal either to R_{ϕ} or $R_{\phi} M$, for some ϕ.
C. Geometrically, what is the transformation $R_{\theta} M R_{\theta}{ }^{-1}$?What is its reduction to the form specified in part B?
D. Write R_{θ} and M as 2×2 matrices, and thereby construct a 2-dimensional unitary representation L of G. Verify the identities of part A algebraically.
E. What is the character of $R_{\theta}, R_{\theta} M$, and $R_{\theta} M R_{\theta}^{-1}$ in the representation L?
F. Define $L_{R_{\theta}}^{[n]}=\left(\begin{array}{cc}\cos n \theta & -\sin n \theta \\ \sin n \theta & \cos n \theta\end{array}\right)=R^{n}=R_{n \theta}$ and $L_{M}^{[n]}=M$ (the latter is independent of n). Show that $L^{[n]}$ is a representation. Note that to do this, it suffices to show that the mapping from group elements to the unitary matrices defined by $L^{[n]}$ will preserve the rules that govern group operations: $R_{\theta} R_{\phi}=R_{\theta+\phi}$, $R_{\theta} M=M R_{-\theta}$, and $M^{2}=I$.
G. Define $S_{R_{\theta}}=1$ and $S_{M}=-1$. Show S is a one-dimensional representation.

Q2: Characters of representations of a permutation group.
Let P be the permutation group on three objects. This has six elements.
A. Write each group element as a 3×3 permutation matrix. As discussed, this is a unitary representation, which we can call U. For each of the six permutations σ, determine the character $\chi_{U}(\sigma)$.
B. Consider the subgroup of G generated by R_{θ} and M, where θ is restricted to $0,2 \pi / 3$, and $4 \pi / 3$. Show that this is the permutation group on 3 objects.
C. Restricting the group representation L of Question 1 (parts D and E) to the subgroup in part B yields a 2-dimensional unitary representation of P. Determine its character for the six group elements of P.
D. Restricting the group representation S of Question 1 (part G) to the subgroup in part B yields a 1dimensional unitary representation of P. Determine its character for the six group elements of P.

