
Multivariate Methods 
 
Homework #1 (2018-2019), Answers 
 
Q1: Another Lagrange Multiplier application 
 

(As you may well know) the entropy of a discrete distribution is given by 
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Consider a discrete distribution in which np  is the probability of drawing a token of “value” n , where 
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It suffices to maximize ( )log 2 ( ) logi i
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distribution sums to 1, i.e., that 
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Lagrange multiplier, and find extrema of the unconstrained problem by setting derivatives to zero.  
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We now need to find the multipliers l  and m  so that the constraints are satisfied. 
 

For normalization (l ): 
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For the mean (m ): 
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So the constraints are satisfied if 
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We also have to check that this extremum is maximum, not a minimum or saddle point.  This follows from 
general properties of entropy, and the nature of the constraints. First we note that a mixture of two distributions 
that satisfy the constraints will also satisfy the constraints, since the constraints are linear in the distribution.  



But also, since mixing distributions can only increase their entropy, any interior extremum must be a maximum.  
The maximum also must be a global maximum, since if there were two local maxima, then their mixture would 
have a still higher entropy. Finally, the extremum identified above is an interior point, because each of the kp  is 

nonzero. 
 
Note that the above strategy is applicable for maximizing the entropy of a distribution subject to any set of lnear 
constraints – which include mean, variance, skewness, kurtosis, and correlation structure.  However, the 
equations to satisfy the constraints may not be easily solvable. 
 
Q2:  Regression and “cross-correlation analysis” (from MVAR1415) 
Consider the standard regression scenario described in the class notes, pages 1-2.  That is, there are n 
observations, 1, , ny y ,  and p  regressors, where the typical regressor jx


 is a column 1, ,,j n jx x , and the set 

of p  regressors forms a n p´  matrix X , and we seek a set of p   coefficients 1, , pb b , the 1p´  matrix B , 

for which 
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Now let’s assume that the regressors jx


 are orthonormal. For example, we’re doing spatial receptive field 

analysis.  Here ,i jx  corresponds to the luminance presented on the ith trial in pixel j, and we’ve designed our 
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How does this simplify the computation of the regressors B ? 
 

We have the formal solution 1( )B X X X Y* - *= .  The assumptions of orthonormality, namely, , ,
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So *X X  is the identity matrix, and 1( )B X X X Y X Y* - * *= = . That is, the model coefficients B can be 
computed by correlating the response sequence Y against the stimulus sequences X; no matrix inversion is 
needed. 
 
An extension of this argument – choosing the regressors to be a sequence for that is orthogonal to time-shifts of 
itself (e.g., an m-sequence) leads to the “reverse correlation” procedure for determining the temporal aspects of 
receptive fields. 
 


