Multivariate Methods

Homework #1 (2018-2019), Questions

Q1: Another Lagrange Multiplier application

(As you may well know) the entropy of a discrete distribution is given by $H(\vec{p}) = -\frac{1}{\log 2} \sum_{i} p_i \log p_i$.

Consider a discrete distribution in which p_n is the probability of drawing a token of "value" n, where $n=0,1,2,3,\cdots$. Find the distribution \vec{p} that maximizes $H(\vec{p})$ subject to the constraint that the average value is equal to A, i.e., that $\sum_{i=0}^{\infty} i p_i = A$.

Q2: Regression and "cross-correlation analysis" (from MVAR1415)

Consider the standard regression scenario described in the class notes, pages 1-2. That is, there are n observations, y_1, \dots, y_n , and p regressors, where the typical regressor \vec{x}_j is a column $x_{1,j}, \dots, x_{n,j}$, and the set of p regressors forms a $n \times p$ matrix X, and we seek a set of p coefficients b_1, \dots, b_p , the $p \times 1$ matrix B, for which $|Y - XB|^2$ is minimized.

Now let's assume that the regressors \vec{x}_j are orthonormal. For example, we're doing spatial receptive field analysis. Here $x_{i,j}$ corresponds to the luminance presented on the ith trial in pixel j, and we've designed our stimuli so that, over the entire stimulus sequence, $\sum_{i=1}^{N} x_{i,j} x_{i,k} = 0$ if $j \neq k$, and $\sum_{i=1}^{N} x_{i,j} x_{i,j} = 1$. How does this simplify the computation of the regressors B?