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Deep Learning Introduction 
 
This material is intended as a brief overview of a very large field, with the limited goals of 
making connections with earlier material in the course, defining some terms, and outlining some 
open issues. 
 
The general motivating problem is to classify high-dimensional quantities – for example, to 
determine whether photographs contain a cat, whether an audio stream is spoken in English, or 
whether some text is relevant to a search query. Since our brains can do these tasks, it is 
hypothesized that a neurally-inspired architecture may be a good way to solve these problems. 

Architectures 
 
One can also view deep learning architectures as natural outgrowths of simpler classifiers. The 
simplest is a linear discriminant – identification of a set of weights iw , that enable observation 
vectors ix  to be classified into two categories, based on the value of i i

i

y w x . The Fisher 

linear discriminant is of this form. The weights are determined by solving an eigenvalue 
problem, which maximizes the ratio of the between-class variance to the within-class variance. 
Support vector machines also yield a decision variable in this way, but the quantity that is 
extremized to find the weights is different: the number of classification errors is minimized. This 
architecture is also that of the “perceptron”: a linear weighting of binary inputs, followed by a 
decision threshold. 
 
These classification methods only work if the observations in the two classes can be separated by 
a hyperplane. When this is not the case, it is natural to seek a solution by embedding the original 
observations in a higher-dimensional space, anticipating that in the larger space, the points can 
be separated by a hyperplane. For example, one could create new coordinates from the raw 
observations ix  by also considering their squares and pairwise products. This leads to a classifier 
of the form ,i i i j i j

i i j

y w x q x x


    -- a quadratic discriminant. The new (and larger) set of 

weights can be found by the same approach that worked for linear classifiers, but now applied to 
the augmented set of variables. If, for example, one category consists of points near the origin 
and the other category consists of points that are far from the origin, then no hyperplane will 
separate these two clouds, but a quadratic discriminant -- 2

i
i

y x  -- will do a great job. 

The derived variables (the nonlinear functions of the original variables) the can be regarded as 
“features”, which, hopefully, are more useful than the original variables for classification. 
 
The features needn’t be limited to polynomials or pairwise combinations of the original 
variables. So it is a real challenge to decide how to choose them. It is natural to look to biology 
for inspiration, since our brains appear to be able to solve classification problems quite well. 
 
A useful heuristic is that the features (i.e., the nonlinear combinations of the input variables) 
should be constructed in a local fashion. That is, if the input consists of images, the features 
might be constructed from pixel values at nearby points; if the input consists of sound, the 
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features might be constructed from amplitudes at nearby times. We might consider these adjacent 
signals to be inputs to a feature-extracting “neuron”, which then sums them, according to some 
set of weights, and then applies a nonlinearity. Thus, at each location or at each time, we would 
create a feature jy via ,( )j j i j i

i is near j

y F w x  .   

If this works – that is, that we can now create a linear classifier from the jy ’s – we’ve now built 
an artificial neural network with one hidden layer. There’s the input layer consisting of the 
inputs, the “hidden” layer whose outputs are the features jy , and a final layer that computes a 
weighted sum of the jy ’s to generate a decision variable. 
 
But if this fails, there are evident ways that we could extend the idea. In particular, loosely 
inspired by a caricature of cortical visual processing, we could create a second level of features 

jz  from the jy ’s, and try again to find a linear classifier. We could continue to add more and 
more layers, with each layer creating features by additively combining local signals from the 
previous layer, and applying a nonlinearity. The features become more and more abstract.  And 
even if each layer has only local connectivity, eventually, features at a sufficiently deep layer 
will have access to the entire input. This is the “deep neural network” architecture. 

Determining network parameters 
 
Once the architecture has been chosen, the challenge of determining the parameters – the 
weights, and the nonlinear functions -- looms. As formulated above, the number of model 
parameters is extraordinarily large – in each layer of an image-processing network, there is a 
weight ,i jw for each location j  in the image, and, for each location i  in its neighborhood. 
Additionally, the “activation functions” F  need to be chosen and parameterized. So without 
further restrictions, there could be thousands to millions of parameters to fit. 

Reducing the parameter count 
 
We can dramatically reduce the parameter count by adding an assumption: that the features to be 
extracted are independent of location. That is, the weights ,i jw  depend only on the relative 

locations in the current layer ( )j  and the input from the previous layer ( i ): ( )j j i j i
i j L

y F w x
 

  . 

For image processing, we’d interpret the subscripts as 2-vectors, indicating horizontal and 
vertical location in the image.  Similarly, for movies, the subscripts would be 3-vectors, two 
coordinates for position and one for time. 
 
With this constraint, the signals created by weighted sums are a convolution of the previous 
layer’s outputs.  
 
We could further require that the activation functions jF  are identical too. This assumption of 
location-invariance can be applied to individual layers, or to all layers – the latter, resulting in a 
“convolutional neural network.”  
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We can retain the spirit and potential advantages of convolution without requiring that each layer 
has the same number of nodes as the previous layer. A layer can downsample a previous layer, 
but it can also upsample – for example, by extracting multiple features at each point: 

[ ] [ ]( )k k
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y F w x
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  . Inspiration for this again comes from biological vision: at each retinal 

location, there are “ON” cells and “OFF” cells, and at each location in the visual field there are 
cortical neurons that respond best to bars at the full range of orientations. 

Activation functions 
 
As above, an activation function determines how a node responds to the weighted combination 
of its inputs: ( )i i

i

y F w x  . Note that in the absence of an activation function, all of the layers 

would collapse to a single linear transformation.  So they are crucial. 
 
There are many reasonable choices for activation functions, each with their own rationales: 
 

• RELU (rectified linear): ( ; ) max( ,0)F x a x a   -- a caricature of a neuron  
• Quadratic: 2( ; ) ( )F x a x a   -- corresponds to a squared distance; allows for 

multiplication 2 21 1( ) ( )
4 4

u v u v uv     

• Half-quadratic:  2( ; ) max( ,0)F x a x a   – combines the ideas behind RELU and 
quadratic 

• Exponential: ( ) xF x e  – analytic, works well with general linear models, no parameters  
• Hyperbolic tangent:  ( ; , ) tanh ( )F x a x a    – analytic, symmetric, saturates in both 

directions 

• Sigmoid: 
( )

( )( ; , )
1

x a

x a

eF x a
e
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

: also saturates in both directions, but asymmetric. 

Mimics channel-opening?   
 

All of the above can be scaled by a multiplier, but this is redundant with changing the weight of 
its output at the next layer. 
 
We also need a special kind of activation function at the output layer, to render a classification. 
These functions map a set of inputs ix  at the next-to-last layer to a set of final outputs ip , each 
representing the likelihood of membership in each of the possible categories. The usual choice is 

the “softmax”, with parameter  : 
i
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. Note that 1j
j

p   and each 0jp  , so can be 

considered the probability that the correct answer is class i . Note also that as   , the 
softmax becomes “hard”, i.e., it assigns 1 to the category i  with the largest ix , and 0 to the 
others. 
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Backpropagation 
Even with the parameter count reduced by a convolutional architecture in one or more layers, the 
number of parameters remains quite large (typically at least hundreds). Moreover, analytic 
solutions, such as those that yielded the linear discriminant, are not available.  So, iterative 
procedures – “training” or “learning” -- must be used, even when there is only one hidden layer.  
 
The identification of a basic training technique, “backpropagation” (Rumelhart, Hinton & 
Williams (1986) – though there were many earlier foreshadowings of this) was a major advance 
that enabled experimental exploration of the capabilities of artificial neural networks. 
 
The basic idea is to define a “loss function” that is to be minimized by adjusting the weights. A 
simple loss function is the frequency of misclassifications; more sophisticated cost functions 
might take into account the severity of the errors. After initialization of the network with some 
(typically random) choice of weights, the loss function is computed by examining the network’s 
outputs for collection of inputs for which the correct answer is known. The weights are then 
adjusted by gradient descent. That is, the derivative of the loss function is calculated with respect 
to each weight, and then the weights are adjusted a small amount to reduce the loss. The term 
“backpropagation” is used for this since the network is a nested series of nonlinearities, and 
application of the chain rule amounts to propagation of changes in the output back to earlier 
layers. 
 
Backpropagation algorithms themselves have many parameters and options – for example, how 
much to change the weights at each step, and how many examples to examine in a “batch” before 
modifying the weights. 

Room for progress 
 
Along with recognizing the dramatic successes of deep learning in some domains (facial 
recognition, object recognition), it is worthwhile to be aware of the limitations and areas in 
which substantial improvement is likely still possible. In broad strokes, these successes represent 
empirical successes built on brute force, rather than on principle – and designing a deep network 
to solve a new task has been likened to building a bridge by reference to other bridges that have 
worked, but without a knowledge of physics. 
 
Even with a reduction in parameter count via a convolutional architecture, and a well-tuned 
backpropagation algorithm, the size of the training set needed to reach adequate performance can 
be immense. Even with a large training set, it is typically the case that a deep learning network 
that solves one problem fails to solve related ones (e.g., it can determine whether images of 
isolated objects are images of a cat, but it can’t do this if the image has a cluttered background.)  
The generalization failure is distinct from overfitting per se -- standard training procedures 
protect against overfitting by holding out a portion of the training set for validation. Proper 
behavior on a held-out subset of the training set is not the same as proper behavior in a new 
context. 
 
One approach to the problem of generalization is to recognize that some appropriate 
preprocessing might be able to remove “nuisance” variables introduced by context. A simple 
example is that, instead of processing the light intensity values in an image, one could remove 
the mean level and process local contrasts.  More abstractly, one would want to identify a smaller 
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set of features, from which one could reproduce, or at least approximate, the inputs, in a way that 
is sufficiently informative as to allow for the desired decisions.  
 
This is the idea behind an “autoencoder” – an artificial neural network whose task is to create a 
simpler representation of the input set, for further processing a second neural network. That is, 
for the autoencoder, the loss function is a measure of how well the original input is reproduced.  
 
Principal components analysis can be viewed as a basic kind of autoencoder. Each component is 
represented by a node, and the weighing for each node (non-convolutional) is the linear 
transformation that projects the data onto that principal component. If all components are 
represented by nodes, the input can be fully reconstituted; if one limits the nodes to a smaller 
number of components, one has achieved a reduction in dimension.   
 
The autoencoder generalizes this idea to nodes with nonlinear activation functions. Importantly, 
simplification of the representation is usefully enforced by means other than reducing the 
number of nodes. A typical approach is to allow more nodes in intermediate nodes or in the 
output, compared to the input, but to enforce simplicity by including a term in the loss function 
favors output patterns in which only a few nodes are active – a “sparsity” term. “Sparse 
dictionary learning” is an example of this: as with a generic autoencoder, the autoencoder’s 
output is a sparse set of signals that is derived from the input via weights and nonlinear 
activation functions, but the input can be reconstructed by a linear combination of the outputs – 
the “dictionary”. 

Differences between DL architectures and human processing 
 
While artificial neural networks are explicitly inspired by biological neural networks, there are 
many ways in which they differ – both in terms of architecture and function. 
 
Regarding architecture: real neural networks have massive feedback between layers; their 
function relies on dynamics, especially the interplay between within-layer processing and 
between-layer processing; real neurons use spikes; real networks make use of active sensation 
(e.g., moving the sensor); real networks make use of attention; real networks are not 
convolutional – they are not spatially homogeneous (e.g., we have a fovea). 
 
Regarding function: we learn from a small number of trials; we easily generalize; errors usually 
result in a mis-classification into a related category rather than an unrelated one; small changes 
in the input (e.g., a single pixel) result in small changes in the classification. 
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