Groups, Fields, and Vector Spaces
Homework \#1 (2020-2021), Answers

Q1: Group or not a group?
Which are groups? If a group, is it commutative? Finite or infinite? If finite, how many elements? If infinite, is it discrete or continuous? If not a group, why not?
A. Complex numbers, under addition Group, commutative, infinite, continuous.
B. Complex numbers, under multiplication Not a group, inverse of 0 is does not exist.
C. The rotations of a regular pentagon into itself, under composition

Group, commutative, finite with 5 elements.
D. The rotations and mirror-reflections of a regular pentagon into itself, under composition
Group, non-commutative (since a mirror-reflection followed by a rotation does not yield the same result as a rotation followed by a mirror-reflection), 10 elements - the 5 rotations and the 5 mirrorings along planes that pass through one vertex and the midpoint of the opposite side.
E. The mirror-reflections of a regular pentagon into itself, under composition Not a group, does not contain the identity, and is not closed under the group operation.
F. The integers $\{0,1,2, \ldots, N-1\}$ under addition $\bmod N$, i.e., $a \circ b=c$ if $a+b-c$ is a multiple of N.
Group - and for $N=5$, abstractly the same group as Q1D.
G. The set of all translations of 3-space, under composition

Group, commutative, infinite, continuous.
H. The set of all rotations of 3-space, under composition Group, non-commutative, infinite, continuous.
I. The set of all $N \times N$ matrices with integer entries, under matrix addition Group, commutative, infinite, discrete.
J. The set of all $N \times N$ matrices with integer entries, under matrix multiplication

Not a group, does not contain inverses. The inverse of the matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $\frac{1}{a d-b c}\left(\begin{array}{cc}d & -c \\ -b & a\end{array}\right)$, so, unless $a d-b c= \pm 1$, inverses will not exist.
K. The set of all 2×2 matrices with integer entries and determinant 1 , under matrix multiplication
Group, non-commutative, infinite, discrete. (See Q1J regarding inverses)
Q2. The "center"
The center of a group $G, Z(G)$, is defined as the set of elements c of G that commute with every element of G i..e, for which $g \circ c=c \circ g$.
A. Show that the center of a group is a group.

First, we need to show that the center is closed under the group operation, i.e., that if $c_{1} \in Z(G)$ and $c_{2} \in Z(G)$, then $c_{1} \circ c_{2} \in Z(G)$. To show this:
$g \circ\left(c_{1} \circ c_{2}\right)=\left(g \circ c_{1}\right) \circ c_{2}=\left(c_{1} \circ g\right) \circ c_{2}=c_{1} \circ\left(g \circ c_{2}\right)=c_{1} \circ\left(c_{2} \circ g\right)=\left(c_{1} \circ c_{2}\right) \circ g$, where each step follows either from associativity or from the assumption that $c_{i} \in Z(G)$. Next we need to show that the group axioms G1-G3 (notes pages 2-3) hold.
G1: Associativity. This holds in $Z(G)$ since it holds in G.
G2: Identity. We need to show that the identity element e for G is in the center. This holds because the group axioms for G imply that
$g \circ e=g=e \circ g$
G3: Inverses. We need to show that if $c \in G$ then $c^{-1} \in G$. This also follows from the group axioms for G. In complete detail (make sure you see which group axioms are used at each step: $g \circ c=c \circ g$
$\Rightarrow(g \circ c) \circ c^{-1}=(c \circ g) \circ c^{-1}$
$\Rightarrow g \circ\left(c \circ c^{-1}\right)=c \circ\left(g \circ c^{-1}\right)$
$\Rightarrow g=c \circ\left(g \circ c^{-1}\right)$
$\Rightarrow c^{-1} \circ g=c^{-1} \circ\left(c \circ\left(g \circ c^{-1}\right)\right)$
$\Rightarrow c^{-1} \circ g=\left(c^{-1} \circ c\right) \circ\left(g \circ c^{-1}\right)$
$\Rightarrow c^{-1} \circ g=g \circ c^{-1}$
B. For each of the groups in Q1, find the center.

First, we note that if G is commutative, then $Z(G)=G$ so we only need to consider the non-commutative groups.

Q1D: First, note that (in general) $g \circ c=c \circ g$ is equivalent to $g \circ c \circ g^{-1}=c$. Note that a rotation followed by a reflection, followed by the inverse rotation, is a reflection across the rotated axis. So the only way that a rotation and a reflection will commute is if the rotation is through an angle of 0 or π. For the rotations of a regular N-gon, the rotations are $2 \pi k / N$. So for N odd, only happens for $k=0$, the trivial rotation. So $Z=\{e\}$. (For rotations and reflections of a regular N-gon where N is even, the center also contains the rotation by π.)

Q1H: A rotation g, followed by second rotation c, followed by the inverse rotation g^{-1}, is the same as a rotating by c after its axis that has been rotated by g. So unless c is trivial, there will be rotations that it does not commute with. So $\operatorname{So} Z=\{e\}$.
Q1K. For $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ to be in the center, it must commute with all 2×2 matrices of integers with unit determinant. In particular, $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, so $d=a$ and $c=-b$.
$\Rightarrow\left(\begin{array}{ll}-b & a \\ -d & c\end{array}\right)=\left(\begin{array}{cc}c & d \\ -a & b\end{array}\right)$
But also,
$\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$
$\Rightarrow\left(\begin{array}{cc}2 a+b & a+b \\ a-2 b & a-b\end{array}\right)=\left(\begin{array}{cc}2 a-b & a+2 b \\ a-b & a+b\end{array}\right)$, so $b=0$.
So the only possibilities for the center are of the form $\left(\begin{array}{ll}a & 0 \\ 0 & a\end{array}\right)$.
Since the determinant is assumed to be 1 , this means that $a= \pm 1$ and that
$Z(G)=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right)\right\}$.

