Groups, Fields, and Vector Spaces

Homework #2 (2020-2021), Answers

Q1: Putting together groups: Direct products

Let G and H be groups, with elements g, g', etc. in G and h, h', etc. in H, and group operations \circ_G and \circ_H . We define the direct product of G and H, $G \times H$, as the set of ordered pairs (g,h), and the group operation $(g,h) \circ (g',h') = (g \circ_G g', h \circ_H h')$.

A. Show that $G \times H$ is a group.

For G1, associativity – we reduce the operations in $G \times H$ to the operations in G and H, use associativity in G and H, and then combine back to $G \times H$.

 $\begin{pmatrix} (g,h) \circ (g',h') \end{pmatrix} \circ (g'',h'') = \\ (g \circ_G g',h \circ_H h') \circ (g'',h'') = \\ ((g \circ_G g') \circ_G g''), ((h \circ_H h') \circ_H h'') = \\ (g \circ_G (g' \circ_G g'')), (h \circ_H (h' \circ_H h'')) = \\ (g,h) \circ (g' \circ_G g'',h' \circ_H h'') = \\ (g,h) \circ ((g',h') \circ (g'',h''))$

For G2, we need to show that $G \times H$ has an identity element. The natural choice is (e_G, e_H) :

 $(g,h) \circ (e_G, e_H) = (g \circ_G e_G, h \circ_H e_H) = (g,h)$. The first equality is the definition of operations in $G \times H$, second equality uses the properties of the identity in G and H.

For G3, we need to find the inverse of (g,h). The natural choice is to take inverses in *G* and *H* separately, i.e., $(g,h)^{-1} = (g^{-1},h^{-1})$. We then verify: $(g,h) \circ (g^{-1},h^{-1}) = (g \circ_G g^{-1},h \circ_H h^{-1}) = (e_G,e_H)$.

B. Show that the subset S_G consisting of elements in $G \times H$ of the form (g, e_H) , (where e_H is the identity for H) is a subgroup of $G \times H$. Is it guaranteed to be a normal subgroup?

It is closed: $(g, e_H) \circ (g', e_H) = (g \circ_G g', e_H \circ_H e_H) = (g \circ_G g', e_H \circ_H e_H) \in S_G$. It contains the identity and inverses (refer to part A).

It is normal: say b = (g', h'). We need to show that, for any $(g, e_H) \in S_G$, then $b^{-1} \circ (g, e_H) \circ b$ is also in S_G .

 $b^{-1} \circ (g, e_H) \circ b = (g'^{-1}, h'^{-1}) \circ (g, e_H) \circ (g', h') = (g'^{-1} \circ_G g \circ_G g', h'^{-1} \circ_H h') = (g'^{-1} \circ_G g \circ_G g', e_H)$, which is manifestly an element of S_G . Note that this also follows as a special case of Question 2, using the homomorphism $\varphi(g, h) = h$ from $G \times H$ into H, whose kernel is S_G .

C. Let $G = \mathbb{Z}_5$ and $H = \mathbb{Z}_2$. What is the size of $G \times H$? Consider the group D_5 of rotations and reflections of the regular pentagon (i. e., the identity, the four non-trivial rotations by multiples of $2\pi/5$, and the reflections across lines through one vertex and the midpoint of the opposite face). Are $G \times H$ and D_5 the same group? Why or why not?

They both have 10 elements, but they are not the same group. $G \times H$ is commutative, but D_5 is not.

Q2. Kernels and normal subgroups

The notes showed that if $\varphi: G \to H$ is a homomorphism and ker φ is the set of elements of G for which $\varphi(g) = e_H$, then ker φ is a subgroup of G. Show that ker φ is a normal subgroup.

We need to show that, if $b \in G$ and $g \in \ker \varphi$, then $b^{-1}gb \in \ker \varphi$. That is, we need to show that $\varphi(b^{-1}gb) = e_{H}$. This follows because φ is structure-preserving:

$$\varphi(b^{-1} \circ_G g \circ_G b)$$

$$= \varphi(b^{-1}) \circ_H \varphi(g) \circ_H \varphi(b)$$

$$= \varphi(b^{-1}) \circ_H e_H \circ_H \varphi(b)$$

$$= \varphi(b^{-1}) \circ_H \varphi(b)$$

$$= (\varphi(b))^{-1} \circ_H \varphi(b)$$

$$= e_H$$

,

where the next-to-the-last equality follows from the fact that inverses in G are mapped to inverses in H.

Q3: Automorphisms

A. What are all the automorphisms of the rational numbers \mathbb{Q} under addition?

0 must map to 0, since the identity is preserved. We show that the automorphism is determined by the value of $\varphi(1)$. Say $\varphi(1) = a$, for $a \in \mathbb{Q}$. Then $\varphi(n) = \varphi(1) + \ldots + \varphi(1) = n\varphi(1) = na$. Similarly, $m\varphi(1/m) = \varphi(1/m) + \cdots + \varphi(1/m) = \varphi(1) = a$, so $\varphi(1/m) = a/m$. Similarly, $\varphi(n/m) = n\varphi(1/m) = na/m$.

As long as $a \neq 0$, it is invertible.

B. Are there automorphisms of the real numbers \mathbb{R} (under addition) that do not correspond to automorphisms of \mathbb{Q} ?

Yes: with $\varphi(1) = a$, there is still freedom to choose $\varphi(x)$ for an irrational x. This "problem" is cured by requiring that φ respects further structure of \mathbb{R} , e.g., multiplication, or, continuity.

C. What are all the automorphisms of $\mathbb{Q}^n = \mathbb{Q} \times \mathbb{Q} \times \cdots \times \mathbb{Q}$ under addition? (See Q1 for definition of the direct product \times)

Write an element of $\mathbb{Q}^n = \mathbb{Q} \times \mathbb{Q} \times \cdots \times \mathbb{Q}$ as (x_1, \dots, x_n) , an ordered *n*-tuple of elements in \mathbb{Q} . Say $\varphi((1,0,0,\dots,0)) = (a_{11},a_{12},\dots,a_{1n})$ etc. This determines $\varphi((x_1,0,\dots,0)) = x_1\varphi((1,0,\dots,0))$ as in part A, and similarly $\varphi((0,1,0,\dots,0)) = (a_{21},a_{22},a_{23},\dots,a_{2n})$ determines $\varphi((0,x_2,\dots,0)) = x_2\varphi((0,1,\dots,0))$, etc. Once all the "one-hot" $\varphi((1,0,0,\dots,0))$, $\varphi((0,1,0,\dots,0))$, \dots , $\varphi((0,0,0,\dots,1))$'s are specified, φ is determined on all of \mathbb{Q}^n by $\varphi((x_1,\dots,x_n)) = \varphi((x_1,0,\dots,0)) + \varphi((0,x_2,\dots,0)) + \dots + \varphi((0,0,\dots,x_n))$. However, to guarantee that φ is invertible, we need to require that the rows $(a_{11},a_{12},\dots,a_{1n})$, $(a_{21},a_{22},a_{23},\dots,a_{2n})$, $(a_{n1},a_{n2},a_{n3},\dots,a_{nn})$ are linearly independent. So the automorphism group is the group of invertible $n \times n$ matrices with rational entries. The operation in the automorphism group is matrix multiplication.

D. What are all the automorphisms of $\mathbb{Z}_2 \times \mathbb{Z}_2$?

 $\mathbb{Z}_2 \times \mathbb{Z}_2$ has four elements: the identity e = (0,0), $a_1 = (1,0)$, $a_1 = (0,1)$, and $a_3 = (1,1)$. Each of the *a*'s is of order 2, and the product of two distinct *a*'s is the third *a*. So the *a*'s are abstractly identical. So any permutation of the three *a*'s is an automorphism of $\mathbb{Z}_2 \times \mathbb{Z}_2$. (Consonant with part C, this is the same as the group of invertible 2×2 matrices with entries in \mathbb{Z}_2 , and operations carried out mod 2:

 $\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \right\},$