Homework \#2 (2020-2021), Answers
Q1: Putting together groups: Direct products
Let $G$ and $H$ be groups, with elements $g, g^{\prime}$, etc. in $G$ and $h, h^{\prime}$, etc. in $H$, and group operations $\circ_{G}$ and $\circ_{H}$. We define the direct product of $G$ and $H, G \times H$, as the set of ordered pairs $(g, h)$, and the group operation $(g, h) \circ\left(g^{\prime}, h^{\prime}\right)=\left(g \circ_{G} g^{\prime}, h \circ_{H} h^{\prime}\right)$.
A. Show that $G \times H$ is a group.

For G1, associativity - we reduce the operations in $G \times H$ to the operations in $G$ and $H$, use associativity in $G$ and $H$, and then combine back to $G \times H$.
$\left((g, h) \circ\left(g^{\prime}, h^{\prime}\right)\right) \circ\left(g^{\prime \prime}, h^{\prime \prime}\right)=$
$\left(g \circ_{G} g^{\prime}, h \circ_{H} h^{\prime}\right) \circ\left(g^{\prime \prime}, h^{\prime \prime}\right)=$
$\left(\left(g \circ_{G} g^{\prime}\right) \circ_{G} g^{\prime \prime}\right),\left(\left(h \circ_{H} h^{\prime}\right) \circ_{H} h^{\prime \prime}\right)=$
$\left(g \circ_{G}\left(g^{\prime} \circ_{G} g^{\prime \prime}\right)\right),\left(h \circ_{H}\left(h^{\prime} \circ_{H} h^{\prime \prime}\right)\right)=$
$(g, h) \circ\left(g^{\prime} \circ_{G} g^{\prime \prime}, h^{\prime} \circ_{H} h^{\prime \prime}\right)=$
$(g, h) \circ\left(\left(g^{\prime}, h^{\prime}\right) \circ\left(g^{\prime \prime}, h^{\prime \prime}\right)\right)$
For G 2 , we need to show that $G \times H$ has an identity element. The natural choice is ( $e_{G}, e_{H}$ ): $(g, h) \circ\left(e_{G}, e_{H}\right)=\left(g \circ_{G} e_{G}, h \circ_{H} e_{H}\right)=(g, h)$. The first equality is the definition of operations in $G \times H$, second equality uses the properties of the identity in $G$ and $H$.

For G3, we need to find the inverse of $(g, h)$. The natural choice is to take inverses in $G$ and $H$ separately, i.e., $(g, h)^{-1}=\left(g^{-1}, h^{-1}\right)$. . We then verify:
$(g, h) \circ\left(g^{-1}, h^{-1}\right)=\left(g \circ_{G} g^{-1}, h \circ_{H} h^{-1}\right)=\left(e_{G}, e_{H}\right)$.
B. Show that the subset $S_{G}$ consisting of elements in $G \times H$ of the form $\left(g, e_{H}\right)$, (where $e_{H}$ is the identity for $H$ ) is a subgroup of $G \times H$. Is it guaranteed to be a normal subgroup?

It is closed: $\left(g, e_{H}\right) \circ\left(g^{\prime}, e_{H}\right)=\left(g \circ_{G} g^{\prime}, e_{H} \circ_{H} e_{H}\right)=\left(g \circ_{G} g^{\prime}, e_{H} \circ_{H} e_{H}\right) \in S_{G}$. It contains the identity and inverses (refer to part A).
It is normal: say $b=\left(g^{\prime}, h^{\prime}\right)$. We need to show that, for any $\left(g, e_{H}\right) \in S_{G}$, then $b^{-1} \circ\left(g, e_{H}\right) \circ b$ is also in $S_{G}$.
$b^{-1} \circ\left(g, e_{H}\right) \circ b=\left(g^{\prime-1}, h^{\prime-1}\right) \circ\left(g, e_{H}\right) \circ\left(g^{\prime}, h^{\prime}\right)=\left(g^{\prime-1} \circ_{G} g \circ_{G} g^{\prime}, h^{\prime-1} \circ_{H} h^{\prime}\right)=\left(g^{\prime-1} \circ_{G} g \circ_{G} g^{\prime}, e_{H}\right)$, which is manifestly an element of $S_{G}$. Note that this also follows as a special case of Question 2, using the homomorphism $\varphi(g, h)=h$ from $G \times H$ into $H$, whose kernel is $S_{G}$.
C. Let $G=\mathbb{Z}_{5}$ and $H=\mathbb{Z}_{2}$. What is the size of $G \times H$ ? Consider the group $D_{5}$ of rotations and reflections of the regular pentagon (i. e., the identity, the four non-trivial rotations by multiples of $2 \pi / 5$, and the reflections across lines through one vertex and the midpoint of the opposite face). Are $G \times H$ and $D_{5}$ the same group? Why or why not?

They both have 10 elements, but they are not the same group. $G \times H$ is commutative, but $D_{5}$ is not.

## Q2. Kernels and normal subgroups

The notes showed that if $\varphi: G \rightarrow H$ is a homomorphism and $\operatorname{ker} \varphi$ is the set of elements of $G$ for which $\varphi(g)=e_{H}$, then $\operatorname{ker} \varphi$ is a subgroup of $G$. Show that $\operatorname{ker} \varphi$ is a normal subgroup.

We need to show that, if $b \in G$ and $g \in \operatorname{ker} \varphi$, then $b^{-1} g b \in \operatorname{ker} \varphi$. That is, we need to show that $\varphi\left(b^{-1} g b\right)=e_{H}$. This follows because $\varphi$ is structure-preserving:
$\varphi\left(b^{-1} \circ_{G} g \circ_{G} b\right)$
$=\varphi\left(b^{-1}\right) \circ_{H} \varphi(g) \circ_{H} \varphi(b)$
$=\varphi\left(b^{-1}\right) \circ_{H} e_{H} \circ_{H} \varphi(b)$
$=\varphi\left(b^{-1}\right) \circ_{H} \varphi(b)$
$=(\varphi(b))^{-1} \circ_{H} \varphi(b)$
$=e_{H}$
where the next-to-the-last equality follows from the fact that inverses in $G$ are mapped to inverses in $H$.

## Q3: Automorphisms

A. What are all the automorphisms of the rational numbers $\mathbb{Q}$ under addition?

0 must map to 0 , since the identity is preserved. We show that the automorphism is determined by the value of $\varphi(1)$. Say $\varphi(1)=a$, for $a \in \mathbb{Q}$. Then $\varphi(n)=\varphi(1)+\ldots+\varphi(1)=n \varphi(1)=n a$. Similarly, $m \varphi(1 / m)=\varphi(1 / m)+\cdots+\varphi(1 / m)=\varphi(1)=a$, so $\varphi(1 / m)=a / m$. Similarly, $\varphi(n / m)=n \varphi(1 / m)=n a / m$. As long as $a \neq 0$, it is invertible.
B. Are there automorphisms of the real numbers $\mathbb{R}$ (under addition) that do not correspond to automorphisms of $\mathbb{Q}$ ?
Yes: with $\varphi(1)=a$, there is still freedom to choose $\varphi(x)$ for an irrational $x$. This "problem" is cured by requiring that $\varphi$ respects further structure of $\mathbb{R}$, e.g., multiplication, or, continuity.
C. What are all the automorphisms of $\mathbb{Q}^{n}=\mathbb{Q} \times \mathbb{Q} \times \cdots \times \mathbb{Q}$ under addition? (See $Q 1$ for definition of the direct product $\times$ )

Write an element of $\mathbb{Q}^{n}=\mathbb{Q} \times \mathbb{Q} \times \cdots \times \mathbb{Q}$ as $\left(x_{1}, \ldots, x_{n}\right)$, an ordered $n$-tuple of elements in $\mathbb{Q}$.
Say $\varphi((1,0,0, \ldots, 0))=\left(a_{11}, a_{12}, \ldots, a_{1 n}\right)$ etc.This determines $\varphi\left(\left(x_{1}, 0, \ldots, 0\right)\right)=x_{1} \varphi((1,0, \ldots, 0))$ as in part A, and similarly $\varphi((0,1,0, \ldots, 0))=\left(a_{21}, a_{22}, a_{23}, \ldots, a_{2 n}\right)$ determines $\varphi\left(\left(0, x_{2}, \ldots, 0\right)\right)=x_{2} \varphi((0,1, \ldots, 0))$, etc.
Once all the "one-hot" $\varphi((1,0,0, \ldots, 0)), \varphi((0,1,0, \ldots, 0)), \ldots, \varphi((0,0,0, \ldots, 1))$ 's are specified, $\varphi$ is determined on all of $\mathbb{Q}^{n}$ by $\varphi\left(\left(x_{1}, \ldots, x_{n}\right)\right)=\varphi\left(\left(x_{1}, 0, \ldots, 0\right)\right)+\varphi\left(\left(0, x_{2}, \ldots, 0\right)\right)+\ldots+\varphi\left(\left(0,0, \ldots, x_{n}\right)\right)$. However, to guarantee that $\varphi$ is invertible, we need to require that the rows $\left(a_{11}, a_{12}, \ldots, a_{1 n}\right),\left(a_{21}, a_{22}, a_{23}, \ldots, a_{2 n}\right),\left(a_{n 1}, a_{n 2}, a_{n 3}, \ldots, a_{n n}\right)$ are linearly independent. So the automorphism group is the group of invertible $n \times n$ matrices with rational entries. The operation in the automorphism group is matrix multiplication.
D. What are all the automorphisms of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ ?
$\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ has four elements: the identity $e=(0,0), a_{1}=(1,0), a_{1}=(0,1)$, and $a_{3}=(1,1)$. Each of the $a$ 's is of order 2 , and the product of two distinct $a$ 's is the third $a$. So the $a$ 's are abstractly identical. So any permutation of the three $a$ 's is an automorphism of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$. (Consonant with part $C$, this is the same as the group of invertible $2 \times 2$ matrices with entries in $\mathbb{Z}_{2}$, and operations carried out mod 2 :
$\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)\right\}$,

