Groups, Fields, and Vector Spaces
Homework \#3 (2020-2021), Answers
Q1: Homomorphism, or not?
In Q1A-C, V is the vector space of infinitely-differentiable functions on the reals, and f is a typical element. Which are the following are homomorphisms?

1A: $\varphi(f)=g$, where $g(x)=x f(x)$
Yes: We need to show $\varphi\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)=\alpha_{1} \varphi\left(f_{1}\right)+\alpha_{2} \varphi\left(f_{2}\right)$.
$\left(\varphi\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)\right)(x)=x\left(\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)(x)\right)$
$=x\left(\alpha_{1} f_{1}(x)+\alpha_{2} f_{2}(x)\right)$
$=\alpha_{1} x f_{1}(x)+\alpha_{2} x f_{2}(x)$
$=\alpha_{1}\left(\left(\varphi\left(f_{1}\right)\right)(x)\right)+\alpha_{2}\left(\left(\varphi\left(f_{2}\right)\right)(x)\right)$
(definition of φ, addition and scalar multiplication in V, definition of φ).
Since this holds for all $x \in \mathbb{R}$, then $\varphi\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)=\alpha_{1} \varphi\left(f_{1}\right)+\alpha_{2} \varphi\left(f_{2}\right)$.

1B. $\varphi(f)=g$, where $g(x)=f(x)+a$ for some nonzero a.

No. If we try to show $\varphi\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)=\alpha_{1} \varphi\left(f_{1}\right)+\alpha_{2} \varphi\left(f_{2}\right)$.
$\left(\varphi\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)\right)(x)=\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)(x)+a=\alpha_{1} f_{1}(x)+\alpha_{2} f_{2}(x)+a$, but
$\left(\alpha_{1} \varphi\left(f_{1}\right)+\alpha_{2} \varphi\left(f_{2}\right)\right)(x)=\alpha_{1}\left(\varphi\left(f_{1}\right)(x)\right)+\alpha_{2}\left(\varphi\left(f_{2}\right)(x)\right)$
$=\alpha_{1}\left(f_{1}(x)+a\right)+\alpha_{2}\left(f_{2}(x)+a\right)$
$=\alpha_{1} f_{1}(x)+\alpha_{2} f_{2}(x)+\left(\alpha_{1}+\alpha_{2}\right) a$
1C. $\varphi(f)=g$, where $g(x)=a f(x)$ for some nonzero a.
Yes: We need to show $\varphi\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)=\alpha_{1} \varphi\left(f_{1}\right)+\alpha_{2} \varphi\left(f_{2}\right)$.
$\left(\varphi\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)\right)(x)=\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)(a x)$
$=\left(\alpha_{1} f_{1}(a x)+\alpha_{2} f_{2}(a x)\right)$
$=\alpha_{1}\left(\left(\varphi\left(f_{1}\right)\right)(x)\right)+\alpha_{2}\left(\left(\varphi\left(f_{2}\right)\right)(x)\right)$
(definition of φ, addition and scalar multiplication in V, definition of φ).
Since this holds for all $x \in \mathbb{R}$, then $\varphi\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)=\alpha_{1} \varphi\left(f_{1}\right)+\alpha_{2} \varphi\left(f_{2}\right)$.
Groups, Fields, and Vector Spaces 1 of 3

1D. Here, the vector space V is the space of functions from a finite set $S=\left\{s_{1}, \ldots, s_{N}\right\}$ to a field k, τ is a mapping from S to itself. For a vector $f \in V$, we define $\varphi(f)$ as the function on S given by $(\varphi(f))(s)=f(\tau(s))$. In words, φ acts on functions by relabeling their inputs according to τ. Is φ a homomorphism? Is it an isomorphism?

It is always a homomorphism.
$\left(\varphi\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)\right)(s)=\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)(\tau(s))$
$=\alpha_{1} f_{1}(\tau(s))+\alpha_{2} f_{2}(\tau(s))$
$=\alpha_{1}\left(\left(\varphi\left(f_{1}\right)\right)(s)\right)+\alpha_{2}\left(\left(\varphi\left(f_{2}\right)\right)(s)\right)$
(definition of φ, addition and scalar multiplication in V , definition of φ).

Since this holds for all $s \in S, \varphi\left(\alpha_{1} f_{1}+\alpha_{2} f_{2}\right)=\alpha_{1} \varphi\left(f_{1}\right)+\alpha_{2} \varphi\left(f_{2}\right)$. Note that this abstracts and generalizes 1C.

In order for φ to be an isomorphism, it has to be map onto all of V and be invertible. If, for example, τ mapped s_{j} and s_{k} onto the same s_{0}, then $(\varphi(f))\left(s_{j}\right)=f\left(\tau\left(s_{j}\right)\right)=f\left(s_{0}\right)$, which would have to be the same as $(\varphi(f))\left(s_{k}\right)=f\left(\tau\left(s_{k}\right)\right)=f\left(s_{0}\right)$. So the range of φ would not contain any elements whose values differed on s_{j} and s_{k}. Conversely, if τ mapped distinct elements of S onto distinct elements (i.e., is a permutation), then we can invert φ, by inverting the permutation: $\left(\varphi^{-1}(f)\right)(s)=f\left(\tau^{-1}(s)\right)$. So φ is an isomorphism if, and only if, τ is a permutation.

Q2: The transformation in $\operatorname{Hom}(V, V)$ associated with coordinate transformations in V is an isomorphism.
In the notes, we found that, given a vector space V and a change in coordinates A (i.e., $v=A v^{\prime}$), then there is an associated mapping in $\operatorname{Hom}(V, V), \Psi_{A}$, defined by $\Psi_{A}(L)=A^{-1} L A$.
A. Show that Ψ_{A} is an isomorphism in $\operatorname{Hom}(V, V)$: that $\Psi_{A}(\alpha L)=\alpha \Psi_{A}(L)$ for any scalar α, that $\Psi_{A}(L+M)=\Psi_{A}(L)+\Psi_{A}(M)$ for any L and M in $\operatorname{Hom}(V, V)$, and that Ψ_{A} has an inverse.

Scaling: $\Psi_{A}(\alpha L)=A^{-1}(\alpha L) A=\alpha A^{-1} L A=\alpha \Psi_{A}(L)$ (definition of Ψ_{A}, linearity of A^{-1}, definition of Ψ_{A})

Superposition: $\Psi_{A}(L+M)=A^{-1}(L+M) A=A^{-1} L A+A^{-1} M A=\Psi_{A}(L)+\Psi_{A}(M)$ (definition of Ψ_{A}, linearity of A^{-1}, definition of Ψ_{A})

Inverses: We show that $\left(\Psi_{A}\right)^{-1}$, the inverse of Ψ_{A}, is $\Psi_{A^{-1}}$
$\Psi_{A^{-1}}\left(\Psi_{A}(L)\right)=\left(A^{-1}\right)^{-1} \Psi_{A}(L) A^{-1}=A \Psi_{A}(L) A^{-1}=A\left(A^{-1} L A\right) A^{-1}=\left(A A^{-1}\right) L\left(A A^{-1}\right)=L$ (definition of $\Psi_{A^{-1}}$, inverse of inverse is self, definition of Ψ_{A}, associative law, definition of inverse). Since this holds for any L, $\Psi_{A^{-1}}$ is the inverse of Ψ_{A}

Groups, Fields, and Vector Spaces 2 of 3
B. Is the mapping from A to Ψ_{A} linear? That is, is $\Psi_{\alpha A+\beta B}=\alpha \Psi_{A}+\beta \Psi_{B}$ for all scalars α, β and all isomorphisms A, B of V ?
No. For example, for a nonzero scalar $\alpha, \Psi_{\alpha A}(L)=(\alpha A)^{-1} L(\alpha A)=\alpha^{-1} A^{-1} L \alpha A=\left(\alpha^{-1} \alpha\right) A^{-1} L A=\Psi_{A}(L)$, but linearity would require that $\Psi_{\alpha A}=\alpha \Psi_{A}$.

