Groups, Fields, and Vector Spaces

Homework #3 (2020-2021), Answers

Q1: Homomorphism, or not?

In Q1A-C, V is the vector space of infinitely-differentiable functions on the reals, and f is a typical element. Which are the following are homomorphisms?

IA: $\varphi(f) = g$, where g(x) = xf(x)

Yes: We need to show $\varphi(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 \varphi(f_1) + \alpha_2 \varphi(f_2)$.

$$\begin{aligned} \left(\varphi(\alpha_1 f_1 + \alpha_2 f_2)\right)(x) &= x\left((\alpha_1 f_1 + \alpha_2 f_2)(x)\right) \\ &= x\left(\alpha_1 f_1(x) + \alpha_2 f_2(x)\right) \\ &= \alpha_1 x f_1(x) + \alpha_2 x f_2(x) \\ &= \alpha_1\left(\left(\varphi(f_1)\right)(x)\right) + \alpha_2\left(\left(\varphi(f_2)\right)(x)\right) \end{aligned}$$

(definition of φ , addition and scalar multiplication in *V*, definition of φ). Since this holds for all $x \in \mathbb{R}$, then $\varphi(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 \varphi(f_1) + \alpha_2 \varphi(f_2)$.

1B. $\varphi(f) = g$, where g(x) = f(x) + a for some nonzero a.

No. If we try to show $\varphi(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 \varphi(f_1) + \alpha_2 \varphi(f_2)$.

$$(\varphi(\alpha_1 f_1 + \alpha_2 f_2))(x) = (\alpha_1 f_1 + \alpha_2 f_2)(x) + a = \alpha_1 f_1(x) + \alpha_2 f_2(x) + a$$
, but

 $\begin{aligned} &\left(\alpha_1\varphi(f_1) + \alpha_2\varphi(f_2)\right)(x) = \alpha_1\left(\varphi(f_1)(x)\right) + \alpha_2\left(\varphi(f_2)(x)\right) \\ &= \alpha_1\left(f_1(x) + a\right) + \alpha_2\left(f_2(x) + a\right) \\ &= \alpha_1f_1(x) + \alpha_2f_2(x) + (\alpha_1 + \alpha_2)a \end{aligned}$

IC. $\varphi(f) = g$, where g(x) = af(x) for some nonzero a. Yes: We need to show $\varphi(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 \varphi(f_1) + \alpha_2 \varphi(f_2)$.

$$\begin{aligned} \left(\varphi(\alpha_1 f_1 + \alpha_2 f_2)\right)(x) &= (\alpha_1 f_1 + \alpha_2 f_2)(ax) \\ &= \left(\alpha_1 f_1(ax) + \alpha_2 f_2(ax)\right) \\ &= \alpha_1\left(\left(\varphi(f_1)\right)(x)\right) + \alpha_2\left(\left(\varphi(f_2)\right)(x)\right) \end{aligned}$$

(definition of φ , addition and scalar multiplication in *V*, definition of φ). Since this holds for all $x \in \mathbb{R}$, then $\varphi(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 \varphi(f_1) + \alpha_2 \varphi(f_2)$.

Groups, Fields, and Vector Spaces 1 of 3

1D. Here, the vector space V is the space of functions from a finite set $S = \{s_1, ..., s_N\}$ to a field k, τ is a mapping from S to itself. For a vector $f \in V$, we define $\varphi(f)$ as the function on S given by $(\varphi(f))(s) = f(\tau(s))$. In words, φ acts on functions by relabeling their inputs according to τ . Is φ a homomorphism? Is it an isomorphism?

It is always a homomorphism. $\left(\varphi(\alpha_1 f_1 + \alpha_2 f_2)\right)(s) = (\alpha_1 f_1 + \alpha_2 f_2)(\tau(s))$ $= \alpha_1 f_1(\tau(s)) + \alpha_2 f_2(\tau(s))$ $= \alpha_1 \left(\left(\varphi(f_1)\right)(s) \right) + \alpha_2 \left(\left(\varphi(f_2)\right)(s) \right)$

(definition of φ , addition and scalar multiplication in V, definition of φ).

Since this holds for all $s \in S$, $\varphi(\alpha_1 f_1 + \alpha_2 f_2) = \alpha_1 \varphi(f_1) + \alpha_2 \varphi(f_2)$. Note that this abstracts and generalizes 1C.

In order for φ to be an isomorphism, it has to be map onto all of V and be invertible. If, for example, τ mapped s_j and s_k onto the same s_0 , then $(\varphi(f))(s_j) = f(\tau(s_j)) = f(s_0)$, which would have to be the same as $(\varphi(f))(s_k) = f(\tau(s_k)) = f(s_0)$. So the range of φ would not contain any elements whose values differed on s_j and s_k . Conversely, if τ mapped distinct elements of S onto distinct elements (i.e., is a permutation), then we can invert φ , by inverting the permutation: $(\varphi^{-1}(f))(s) = f(\tau^{-1}(s))$. So φ is an isomorphism if, and only if, τ is a permutation.

Q2: The transformation in Hom(V,V) associated with coordinate transformations in V is an isomorphism. In the notes, we found that, given a vector space V and a change in coordinates A (i.e., v = Av'), then there is an associated mapping in Hom(V,V), Ψ_A , defined by $\Psi_A(L) = A^{-1}LA$. A. Show that Ψ_A is an isomorphism in Hom(V,V): that $\Psi_A(\alpha L) = \alpha \Psi_A(L)$ for any scalar α , that

 $\Psi_A(L+M) = \Psi_A(L) + \Psi_A(M)$ for any L and M in Hom(V,V), and that Ψ_A has an inverse.

Scaling: $\Psi_A(\alpha L) = A^{-1}(\alpha L)A = \alpha A^{-1}LA = \alpha \Psi_A(L)$ (definition of Ψ_A , linearity of A^{-1} , definition of Ψ_A)

Superposition: $\Psi_A(L+M) = A^{-1}(L+M)A = A^{-1}LA + A^{-1}MA = \Psi_A(L) + \Psi_A(M)$ (definition of Ψ_A , linearity of A^{-1} , definition of Ψ_A)

Inverses: We show that $\left(\Psi_{A}\right)^{-1}$, the inverse of Ψ_{A} , is $\Psi_{A^{-1}}$

 $\Psi_{A^{-1}}(\Psi_A(L)) = (A^{-1})^{-1} \Psi_A(L) A^{-1} = A \Psi_A(L) A^{-1} = A (A^{-1}LA) A^{-1} = (AA^{-1}) L (AA^{-1}) = L \text{ (definition of } \Psi_{A^{-1}}, \text{ inverse of inverse is self, definition of } \Psi_A, \text{ associative law, definition of inverse}). Since this holds for any <math>L$, $\Psi_{A^{-1}}$ is the inverse of Ψ_A

B. Is the mapping from A to Ψ_A linear? That is, is $\Psi_{\alpha A+\beta B} = \alpha \Psi_A + \beta \Psi_B$ for all scalars α , β and all isomorphisms A, B of V? No. For example, for a nonzero scalar α , $\Psi_{\alpha A}(L) = (\alpha A)^{-1} L(\alpha A) = \alpha^{-1} A^{-1} L \alpha A = (\alpha^{-1} \alpha) A^{-1} L A = \Psi_A(L)$, but

Groups, Fields, and Vector Spaces 3 of 3

linearity would require that $\Psi_{\alpha A} = \alpha \Psi_A$.