Groups, Fields, and Vector Spaces

Homework #3 (2020-2021), Answers

Q1: Homomorphism, or not?

In Q1A-C, V is the vector space of infinitely-differentiable functions on the reals, and f is a typical element. Which are the following are homomorphisms?

1A: $\varphi(f) = g$, where g(x) = xf(x)

1B. $\varphi(f) = g$, where g(x) = f(x) + a for some nonzero a.

1C. $\varphi(f) = g$, where g(x) = af(x) for some nonzero a.

1D. Here, the vector space V is the space of functions from a finite set $S = \{s_1, ..., s_N\}$ to a field k, τ is a mapping from S to itself. For a vector $f \in V$, we define $\varphi(f)$ as the function on S given by $(\varphi(f))(s) = f(\tau(s))$. In words, φ acts on functions by relabeling their inputs according to τ . Is φ a homomorphism? Is it an isomorphism?

Q2: The transformation in Hom(V,V) associated with coordinate transformations in V is an isomorphism. In the notes, we found that, given a vector space V and a change in coordinates A (i.e., v = Av'), then there is an associated mapping in Hom(V,V), Ψ_A , defined by $\Psi_A(L) = A^{-1}LA$.

A. Show that Ψ_A is an isomorphism in Hom(V,V): that $\Psi_A(\alpha L) = \alpha \Psi_A(L)$ for any scalar α , that $\Psi_A(L+M) = \Psi_A(L) + \Psi_A(M)$ for any L and M in Hom(V,V), and that Ψ_A has an inverse.

B. Is the mapping from A to Ψ_A linear? That is, is $\Psi_{\alpha A+\beta B} = \alpha \Psi_A + \beta \Psi_B$ for all scalars α , β and all isomorphisms A, B of V?