Homework #3 (2020-2021), Answers

Q1: Homomorphism, or not?

In Q1A-C, \(V \) is the vector space of infinitely-differentiable functions on the reals, and \(f \) is a typical element. Which are the following homomorphisms?

1A. \(\varphi(f) = g \), where \(g(x) = xf(x) \)

1B. \(\varphi(f) = g \), where \(g(x) = f(x) + a \) for some nonzero \(a \).

1C. \(\varphi(f) = g \), where \(g(x) = af(x) \) for some nonzero \(a \).

1D. Here, the vector space \(V \) is the space of functions from a finite set \(S = \{s_1, \ldots, s_N\} \) to a field \(k \), \(\tau \) is a mapping from \(S \) to itself. For a vector \(f \in V \), we define \(\varphi(f) \) as the function on \(S \) given by \((\varphi(f))(s) = f(\tau(s)) \). In words, \(\varphi \) acts on functions by relabeling their inputs according to \(\tau \). Is \(\varphi \) a homomorphism? Is it an isomorphism?

Q2: The transformation in \(\text{Hom}(V, V) \) associated with coordinate transformations in \(V \) is an isomorphism.

In the notes, we found that, given a vector space \(V \) and a change in coordinates \(A \) (i.e., \(v = Av' \)), then there is an associated mapping in \(\text{Hom}(V, V) \), \(\Psi_A \), defined by \(\Psi_A(L) = A^{-1}LA \).

A. Show that \(\Psi_A \) is an isomorphism in \(\text{Hom}(V, V) \): that \(\Psi_A(\alpha L) = \alpha \Psi_A(L) \) for any scalar \(\alpha \), that \(\Psi_A(L + M) = \Psi_A(L) + \Psi_A(M) \) for any \(L \) and \(M \) in \(\text{Hom}(V, V) \), and that \(\Psi_A \) has an inverse.

B. Is the mapping from \(A \) to \(\Psi_A \) linear? That is, is \(\Psi_{\alpha A + \beta B} = \alpha \Psi_A + \beta \Psi_B \) for all scalars \(\alpha \), \(\beta \) and all isomorphisms \(A \), \(B \) of \(V \)?