Groups, Fields, and Vector Spaces
Homework \#3 (2020-2021), Answers
Q1: Homomorphism, or not?
In Q1A-C, V is the vector space of infintiely-differentiable functions on the reals, and f is a typical element. Which are the following are homomorphisms?

1A: $\varphi(f)=g$, where $g(x)=x f(x)$
1B. $\varphi(f)=g$, where $g(x)=f(x)+a$ for some nonzero a.
1C. $\varphi(f)=g$, where $g(x)=a f(x)$ for some nonzero a.

1D. Here, the vector space V is the space of functions from a finite set $S=\left\{s_{1}, \ldots, s_{N}\right\}$ to a field k, τ is a mapping from S to itself. For a vector $f \in V$, we define $\varphi(f)$ as the function on S given by $(\varphi(f))(s)=f(\tau(s))$. In words, φ acts on functions by relabeling their inputs according to τ. Is φ a homomorphism? Is it an isomorphism?

Q2: The transformation in $\operatorname{Hom}(V, V)$ associated with coordinate transformations in V is an isomorphism. In the notes, we found that, given a vector space V and a change in coordinates A (i.e., $v=A v^{\prime}$), then there is an associated mapping in $\operatorname{Hom}(V, V), \Psi_{A}$, defined by $\Psi_{A}(L)=A^{-1} L A$.
A. Show that Ψ_{A} is an isomorphism in $\operatorname{Hom}(V, V)$: that $\Psi_{A}(\alpha L)=\alpha \Psi_{A}(L)$ for any scalar α, that $\Psi_{A}(L+M)=\Psi_{A}(L)+\Psi_{A}(M)$ for any L and M in $\operatorname{Hom}(V, V)$, and that Ψ_{A} has an inverse.
B. Is the mapping from A to Ψ_{A} linear? That is, is $\Psi_{\alpha A+\beta B}=\alpha \Psi_{A}+\beta \Psi_{B}$ for all scalars α, β and all isomorphisms A, B of V ?

