Groups, Fields, and Vector Spaces (and a bit from Linear Transformations)

Homework #4 (2020-2021), Answers

Q1: Tensor products in 2 dimensions

The general setup is taken from the section of the notes on the effect of coordinate changes on tensor products: two vector spaces V and W, a coordinate change in V corresponding to an invertible $m \times m$ matrix A (with v = Av', and a coordinate change in W corresponding to an invertible $n \times n$ matrix B (or a with w = Bw').

We considered a tensor product $q \in V \otimes W$ expressed in coordinates, as $q = \sum_{i=1}^{m} \sum_{j=1}^{n} q_{i,j}(v_i \otimes w_j)$. We then

showed that in the new coordinate system, $q = \sum_{k=1}^{m} \sum_{m=1}^{n} q_{k,l}'(v_k \otimes w_l)$, where the coefficients $q'_{k,l}$ of $v'_k \otimes w'_l$ are

given by
$$q'_{k,l} = \sum_{i=1}^{m} \sum_{j=1}^{n} q_{i,j} A_{i,k} B_{j,l}$$
. Here, we specialize this to the case $V = W$, $A = B$, and $m = n = 2$.

A. Write out
$$q'_{k,l} = \sum_{i=1}^{m} \sum_{j=1}^{n} q_{i,j} A_{i,k} B_{j,l}$$
 explicitly for this special case (without summation notation)

$$q'_{k,l} = q_{1,1}A_{1,k}A_{1,l} + q_{1,2}A_{1,k}A_{2,l} + q_{2,1}A_{2,k}A_{1,l} + q_{2,2}A_{2,k}A_{2,l}$$

B. Show that if $q_{i,j} = q_{j,i}$, then $q'_{k,l} = q'_{l,k}$. Note that this means we found a subspace of $V \otimes V$ that is invariant under all coordinate changes. What is its dimension?

The conditions and the conclusions automatically holds "on the diagonal", i.e., for i = j and k = l. Off the diagonal: let $q_{1,2} = q_{2,1} = q_0$. Then

$$q'_{1,2} = q_{1,1}A_{1,1}A_{1,2} + q_0(A_{1,1}A_{2,2} + A_{2,1}A_{1,2}) + q_{2,2}A_{2,1}A_{2,2}$$
, while

 $q_{2,1}' = q_{1,1}A_{1,2}A_{1,1} + q_0 \left(A_{1,2}A_{2,1} + A_{2,2}A_{1,1}\right) + q_{2,2}A_{2,2}A_{2,1}.$ Therefore are equal torus by terms

These are equal, term by term.

The dimension of the subspace of $V \otimes V$ that satisfies $q_{i,j} = q_{j,i}$ is 3: $q_{1,1}$ and $q_{1,2}$ are free to vary, and the other terms are constrained by $q_{1,2} = q_{2,1} = q_0$.

C. Show that if $q_{i,j} = -q_{j,i}$, then $q'_{k,l} = -q'_{l,k}$. Note that this means we found another subspace of $V \otimes V$ that is invariant under all coordinate changes. What is its dimension?

On the diagonal, the conditions require that $q_{1,1} = 0$ and $q_{2,2} = 0$. Off the diagonal: let $q_{1,2} = q_d$, and $q_{2,1} = -q_d$. Then

$$\begin{aligned} q_{1,1}' &= q_d \left(A_{1,1} A_{2,1} - A_{2,1} A_{1,1} \right) = 0 \\ q_{1,2}' &= q_d \left(A_{1,1} A_{2,2} - A_{2,1} A_{1,2} \right), \end{aligned}$$

$$\begin{split} & q_{2,1}' = q_d \left(A_{1,2} A_{2,1} - A_{2,2} A_{1,1} \right) = -q_{1,2}', \\ & q_{2,2}' = q_d \left(A_{1,2} A_{2,2} - A_{2,2} A_{1,2} \right) = 0. \end{split}$$

There's only one free parameter, so the dimension is 1. The coordinate change by A in V has been mapped into a linear transformation in this subspace, namely, multiplication by $A_{1,2}A_{2,1} - A_{2,2}A_{1,1}$.

Q2: Determinants of some transformations from first principles

Setup: V is a vector space of dimension m, and A is a linear transformation in Hom(V,V). Further assume that A has m linearly-independent eigenvectors w_i , with $Aw_i = \lambda_i w_i$.

A. Find det(A) from the its definition as $\frac{anti((Av)^{\otimes m})}{anti(v^{\otimes m})}$.

We take $v^{\otimes m} = w_1 \otimes w_2 \otimes \cdots \otimes w_m$. Then

 $Av^{\otimes m} = Aw_1 \otimes Aw_2 \otimes \cdots \otimes Aw_m = \lambda_1 w_1 \otimes \lambda_2 w_2 \otimes \cdots \otimes \lambda_m w_m = (\lambda_1 \lambda_2 \cdots \lambda_m) (w_1 \otimes w_2 \otimes \cdots \otimes w_m) = (\lambda_1 \lambda_2 \cdots \lambda_m) v^{\otimes m}$

This is also true for any permutation of the w_i 's. So

$$\det(A) = \frac{anti((Av)^{\otimes m})}{anti(v^{\otimes m})} = \lambda_1 \lambda_2 \cdots \lambda_m.$$

B. With the above setup, find det($A \otimes A$), where $A \otimes A$ is the linear transformation of $V \otimes V$ defined by $(A \otimes A)(v \otimes v') = Av \otimes Av'$.

 $V \otimes V$ has dimension m^2 . We reduce this to Q2A by finding a set of m^2 linearly-independent eigenvectors for $A \otimes A$: the elementary tensors $w_j \otimes w_k$. They are linearly-independent, because if not, we could use the rule for combining elementary tensor products to deduce linear dependence among the w_j 's. Their eigenvalues are given by $(A \otimes A)(w_j \otimes w_k) = (\lambda_j w_j \otimes \lambda_k w_k) = \lambda_j \lambda_k (w_j \otimes w_k)$. So the product of the eigenvalues, which is (by Q2A) is det $(A \otimes A)$, is $(\lambda_1 \lambda_1)(\lambda_1 \lambda_2)\cdots(\lambda_1 \lambda_m)(\lambda_2 \lambda_1)\cdots(\lambda_2 \lambda_m)\cdots(\lambda_m \lambda_1)(\lambda_m \lambda_2)\cdots(\lambda_m \lambda_m)$. This is $(\lambda_1 \lambda_2 \cdots \lambda_m)^{2m}$, since each λ occurs m times in the first and second position of this product.