Groups, Fields, and Vector Spaces (and a bit from Linear Transformations)
Homework \#4 (2020-2021), Answers
Q1: Tensor products in 2 dimensions
The general setup is taken from the section of the notes on the effect of coordinate changes on tensor products: two vector spaces V and W, a coordinate change in V corresponding to an invertible $m \times m$ matrix A (with $v=A v^{\prime}$, and a coordinate change in W corresponding to an invertible $n \times n$ matrix B (or a with $w=B w^{\prime}$). We considered a tensor product $q \in V \otimes W$ expressed in coordinates, as $q=\sum_{i=1}^{m} \sum_{j=1}^{n} q_{i, j}\left(v_{i} \otimes w_{j}\right)$. We then showed that in the new coordinate system, $q=\sum_{k=1}^{m} \sum_{m=1}^{n} q_{k, l}{ }^{\prime}\left(v_{k} \otimes w_{l}\right)$, where the coefficients $q_{k, l}^{\prime}$ of $v_{k}^{\prime} \otimes w_{l}^{\prime}$ are given by $q_{k, l}^{\prime}=\sum_{i=1}^{m} \sum_{j=1}^{n} q_{i, j} A_{i, k} B_{j, l} . \quad$ Here, we specialize this to the case $V=W, A=B$, and $m=n=2$.
A. Write out $q_{k, l}^{\prime}=\sum_{i=1}^{m} \sum_{j=1}^{n} q_{i, j} A_{i, k} B_{j, l}$ explicitly for this special case (without summation notation).
$q_{k, l}^{\prime}=q_{1,1} A_{1, k} A_{1, l}+q_{1,2} A_{1, k} A_{2, l}+q_{2,1} A_{2, k} A_{1, l}+q_{2,2} A_{2, k} A_{2, l}$
B. Show that if $q_{i, j}=q_{j, i}$, then $q_{k, l}^{\prime}=q_{l, k}^{\prime}$. Note that this means we found a subspace of $V \otimes V$ that is invariant under all coordinate changes. What is its dimension?

The conditions and the conclusions automatically holds "on the diagonal", i.e., for $i=j$ and $k=l$. Off the diagonal: let $q_{1,2}=q_{2,1}=q_{0}$. Then
$q_{1,2}^{\prime}=q_{1,1} A_{1,1} A_{1,2}+q_{0}\left(A_{1,1} A_{2,2}+A_{2,1} A_{1,2}\right)+q_{2,2} A_{2,1} A_{2,2}$, while
$q_{2,1}^{\prime}=q_{1,1} A_{1,2} A_{1,1}+q_{0}\left(A_{1,2} A_{2,1}+A_{2,2} A_{1,1}\right)+q_{2,2} A_{2,2} A_{2,1}$.
These are equal, term by term.
The dimension of the subspace of $V \otimes V$ that satisfies $q_{i, j}=q_{j, i}$ is $3: q_{1,1}$ and $q_{1,2}$ are free to vary, and the other terms are constrained by $q_{1,2}=q_{2,1}=q_{0}$.
C. Show that if $q_{i, j}=-q_{j, i}$, then $q_{k, l}^{\prime}=-q_{l, k}^{\prime}$. Note that this means we found another subspace of $V \otimes V$ that is invariant under all coordinate changes. What is its dimension?
On the diagonal, the conditions require that $q_{1,1}=0$ and $q_{2,2}=0$. Off the diagonal: let $q_{1,2}=q_{d}$, and $q_{2,1}=-q_{d}$. Then
$q_{1,1}^{\prime}=q_{d}\left(A_{1,1} A_{2,1}-A_{2,1} A_{1,1}\right)=0$
$q_{1,2}^{\prime}=q_{d}\left(A_{1,1} A_{2,2}-A_{2,1} A_{1,2}\right)$,
$q_{2,1}^{\prime}=q_{d}\left(A_{1,2} A_{2,1}-A_{2,2} A_{1,1}\right)=-q_{1,2}^{\prime}$,
$q_{2,2}^{\prime}=q_{d}\left(A_{1,2} A_{2,2}-A_{2,2} A_{1,2}\right)=0$.
There's only one free parameter, so the dimension is 1 . The coordinate change by A in V has been mapped into a linear transformation in this subspace, namely, multiplication by $A_{1,2} A_{2,1}-A_{2,2} A_{1,1}$.

Q2: Determinants of some transformations from first principles

Setup: V is a vector space of dimension m, and A is a linear transformation in Hom($V, V)$. Further assume that A has m linearly-independent eigenvectors w_{j}, with $A w_{j}=\lambda_{j} w_{j}$.
A. Find $\operatorname{det}(A)$ from the its definition as $\frac{\operatorname{anti}\left((A v)^{\otimes m}\right)}{\operatorname{anti}\left(v^{\otimes m}\right)}$.

We take $v^{\otimes m}=w_{1} \otimes w_{2} \otimes \cdots \otimes w_{m}$. Then

$$
\begin{aligned}
& A v^{\otimes m}=A w_{1} \otimes A w_{2} \otimes \cdots \otimes A w_{m}=\lambda_{1} w_{1} \otimes \lambda_{2} w_{2} \otimes \cdots \otimes \lambda_{m} w_{m}= \\
& \left(\lambda_{1} \lambda_{2} \cdots \lambda_{m}\right)\left(w_{1} \otimes w_{2} \otimes \cdots \otimes w_{m}\right)=\left(\lambda_{1} \lambda_{2} \cdots \lambda_{m}\right) v^{\otimes m}
\end{aligned} .
$$

This is also true for any permutation of the w_{j} 's. So

$$
\operatorname{det}(A)=\frac{\operatorname{anti}\left((A v)^{\otimes m}\right)}{\operatorname{anti}\left(v^{\otimes m}\right)}=\lambda_{1} \lambda_{2} \cdots \lambda_{m} .
$$

B. With the above setup, find $\operatorname{det}(A \otimes A)$, where $A \otimes A$ is the linear transformation of $V \otimes V$ defined by $(A \otimes A)\left(v \otimes v^{\prime}\right)=A v \otimes A v^{\prime}$.
$V \otimes V$ has dimension m^{2}. We reduce this to Q2A by finding a set of m^{2} linearly-independent eigenvectors for $A \otimes A$: the elementary tensors $w_{j} \otimes w_{k}$. They are linearly-independent, because if not, we could use the rule for combining elementary tensor products to deduce linear dependence among the w_{j} 's. Their eigenvalues are given by $(A \otimes A)\left(w_{j} \otimes w_{k}\right)=\left(\lambda_{j} w_{j} \otimes \lambda_{k} w_{k}\right)=\lambda_{j} \lambda_{k}\left(w_{j} \otimes w_{k}\right)$. So the product of the eigenvalues, which is (by Q2A) is $\operatorname{det}(A \otimes A)$, is $\left(\lambda_{1} \lambda_{1}\right)\left(\lambda_{1} \lambda_{2}\right) \cdots\left(\lambda_{1} \lambda_{m}\right)\left(\lambda_{2} \lambda_{1}\right) \cdots\left(\lambda_{2} \lambda_{m}\right) \cdots\left(\lambda_{m} \lambda_{1}\right)\left(\lambda_{m} \lambda_{2}\right) \cdots\left(\lambda_{m} \lambda_{m}\right)$. This is $\left(\lambda_{1} \lambda_{2} \cdots \lambda_{m}\right)^{2 m}$, since each λ occurs m times in the first and second position of this product.

