Groups, Fields, and Vector Spaces (and a bit from Linear Transformations)
Homework \#4 (2020-2021), Questions
Q1: Tensor products in 2 dimensions
The general setup is taken from the section of the notes on the effect of coordinate changes on tensor products: two vector spaces V and W, a coordinate change in V corresponding to an invertible $m \times m$ matrix A (with $v=A v^{\prime}$, and a coordinate change in W corresponding to an invertible $n \times n$ matrix B (or a with $w=B w^{\prime}$). We considered a tensor product $q \in V \otimes W$ expressed in coordinates, as $q=\sum_{i=1}^{m} \sum_{j=1}^{n} q_{i, j}\left(v_{i} \otimes w_{j}\right)$. We then showed that in the new coordinate system, $q=\sum_{k=1}^{m} \sum_{m=1}^{n} q_{k, l}{ }^{\prime}\left(v_{k} \otimes w_{l}\right)$, where the coefficients $q_{k, l}^{\prime}$ of $v_{k}^{\prime} \otimes w_{l}^{\prime}$ are given by $q_{k, l}^{\prime}=\sum_{i=1}^{m} \sum_{j=1}^{n} q_{i, j} A_{i, k} B_{j, l}$. Here, we specialize this to the case $V=W, A=B$, and $m=n=2$.
A. Write out $q_{k, l}^{\prime}=\sum_{i=1}^{m} \sum_{j=1}^{n} q_{i, j} A_{i, k} B_{j, l}$ explicitly for this special case (without summation notation).
B. Show that if $q_{i, j}=q_{j, i}$, then $q_{k, l}^{\prime}=q_{l, k}^{\prime}$. Note that this means we found a subspace of $V \otimes V$ that is invariant under all coordinate changes. What is its dimension?
C. Show that if $q_{i, j}=-q_{j, i}$, then $q_{k, l}^{\prime}=-q_{l, k}^{\prime}$. Note that this means we found another subspace of $V \otimes V$ that is invariant under all coordinate changes. What is its dimension?

Q2: Determinants of some transformations from first principles
Setup: V is a vector space of dimension m, and A is a linear transformation in $\operatorname{Hom}(V, V)$. Further assume that A has m linearly-independent eigenvectors w_{j}, with $A w_{j}=\lambda_{j} w_{j}$.
A. Find $\operatorname{det}(A)$ from the its definition as $\frac{\operatorname{anti}\left((A v)^{\otimes m}\right)}{\operatorname{anti}\left(v^{\otimes m}\right)}$.
B. With the above setup, find $\operatorname{det}(A \otimes A)$, where $A \otimes A$ is the linear transformation of $V \otimes V$ defined by $(A \otimes A)\left(v \otimes v^{\prime}\right)=A v \otimes A v^{\prime}$.

