Graph-Theoretic Methods

Homework #1 (2020-2021), Answers

Q1: Graph Laplacians

Consider the following graph.

A. Write its graph Laplacian L.

From the definition L = D - A, the difference of the diagonal matrix of the degrees (D) and the adjacency matrix,

L =	(+3)	-1	-1	-1	0	0
	-1	+3	-1	0	-1	0
	-1	-1	+3	0	0	-1
	-1	0	0	+3	-1	-1
	0	-1	0	-1	+3	-1
	0	0	-1	-1	-1	+3

B. Based on the symmetry of the graph, write a permutation matrix $P \neq I$ that commutes with L, for which $P^3 = I$.

Since the connectivity of the graph is unchanged following the permutation $(A_1A_2A_3)(A_4A_5A_6)$, we can take

 $P = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}.$

C. Determine the eigenvalues and eigenvectors of P. Since $P^3 = I$, an eigenvector v with eigenvalue λ must satisfy $v = Iv = P^3v = \lambda^3 v$, so $\lambda^3 = 1$, and $\lambda = 1$ or $\lambda = \omega$ or $\lambda = \omega^2$, where $\omega = e^{2\pi i/3}$.

Graph-Theoretic Methods 1 of 4

Regarding eigenvectors: P is block-diagonal, so it acts independently on two three-dimensional subspaces. If,

for example,
$$Pv = \lambda v$$
 -- in coordinates, $P\begin{pmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5\\ x_6 \end{pmatrix} = \lambda \begin{pmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5\\ x_6 \end{pmatrix}$ -- , then $x_2 = \lambda x_1$, $x_3 = \lambda x_2$, $x_1 = \lambda x_3$, and $x_5 = \lambda x_4$,
 $x_6 = \lambda x_5$, $x_4 = \lambda x_6$, so $v = \begin{pmatrix} a\\ \lambda a\\ \lambda^2 a\\ b\\ \lambda b\\ \lambda^2 b \end{pmatrix}$, where $\lambda \in \{1, \omega, \omega^2\}$, and at least one of a and b are nonzero. Choosing

(a,b) = (1,0) and (a,b) = (0,1) thus displays six eigenvectors of P, as consisting of three pairs (one for each $\lambda \in \{1, \omega, \omega^2\}$). Within each pair, linear combinations are also eigenvectors. That is, the vector space in which P and L act is decomposed into three two-dimensional subspaces, one for each of the three distinct eigenvalues of P. See also Question 2 from Linear Transformations and Group Representations Homework 1 (LTGR2021aHW).

D. Using PL = LP, determine the eigenvectors and eigenvalues of L.

The eigenvectors for *L* must lie wholly within each of the three two-dimensional subspaces outlined above. (Other than an intuitive argument based on symmetry), the formal reason for this is the following. If $Pv = \lambda v$, then $P(Lv) = L(Pv) = \lambda(Lv)$. So if v is in the eigenspace corresponding to λ , then so is Lv. So we can see how *L* acts on the eigenspace corresponding to λ (where $\lambda \in \{1, \omega, \omega^2\}$) by choosing a convenient basis,

$$u_{1}(\lambda) = \begin{pmatrix} 1 \\ \lambda \\ \lambda^{2} \\ 0 \\ 0 \\ 0 \end{pmatrix} \text{ and } u_{2}(\lambda) = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ \lambda \\ \lambda^{2} \end{pmatrix}, \text{ and a generic element of the eigenspace, } au_{1} + bu_{2}.$$

$$L(au_{1}+bu_{2}) = \begin{pmatrix} 3 & -1 & -1 & -1 & 0 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ -1 & -1 & 3 & 0 & 0 & -1 \\ -1 & 0 & 0 & 3 & -1 & -1 \\ 0 & -1 & 0 & -1 & 3 & -1 \\ 0 & 0 & -1 & -1 & -1 & 3 \end{pmatrix} \begin{pmatrix} a \\ \lambda a \\ \lambda^{2}a \\ b \\ \lambda b \\ \lambda^{2}b \end{pmatrix} = \begin{pmatrix} (3-\lambda-\lambda^{2})a-\lambda b \\ (-1+3\lambda-\lambda^{2})a-\lambda b \\ (-1-\lambda-3\lambda^{2})a-\lambda^{2}b \\ -a+(3-\lambda-\lambda^{2})b \\ -a\lambda+(-1+3\lambda-\lambda^{2})b \\ -a^{2}\lambda+(-1-\lambda+3\lambda^{2})b \end{pmatrix} = \\ = \left((3-\lambda-\lambda^{2})a-b \right)u_{1} + \left(-a+(3-\lambda-\lambda^{2})b \right)u_{2}$$

Note that $\lambda^3 = 1$ was crucial for this, and this holds for $\lambda \in \{1, \omega, \omega^2\}$.

Graph-Theoretic Methods 2 of 4

With (a,b) = (1,0), $Lu_1 = (3 - \lambda - \lambda^2)u_1 - u_2$. With (a,b) = (0,1), $Lu_2 = -u_1 + (3 - \lambda - \lambda^2)u_2$. So, in the eigenspace corresponding to λ , L acts like the transformation

$$L_{\lambda} = \begin{pmatrix} 3 - \lambda - \lambda^2 & -1 \\ -1 & 3 - \lambda - \lambda^2 \end{pmatrix}.$$

We therefore need to find the eigenvalues and eigenvectors of the above transformation, and can reconstitute them in the full 6-dimensional space from the definitions of u_1 and u_2 .

Considering first $\lambda = 1$ so $L_1 = \begin{pmatrix} +1 & -1 \\ -1 & +1 \end{pmatrix}$: The eigenvalues are $\{2, 0\}$, either by inspection or by solving the characteristic equation det $(\mu I - L_1) = det \begin{pmatrix} \mu - 1 & 1 \\ 1 & \mu - 1 \end{pmatrix} = \mu^2 - 2\mu = 0$ $\mu = 2$ corresponds to the eigenvector $u_1 - u_2 = \begin{pmatrix} +1 \\ +1 \\ +1 \\ -1 \\ -1 \\ -1 \end{pmatrix}$, $\mu = 0$ corresponds to the eigenvector $u_1 + u_2 = \begin{pmatrix} +1 \\ +1 \\ +1 \\ +1 \\ +1 \\ +1 \end{pmatrix}$, the trivial eigenvector of a connected

graph.

 $\lambda = \omega \text{ and } \lambda = \omega^2 \text{ can be considered together, as } \omega \text{ and } \omega^2 \text{ are complex-conjugates.}$ $L_{\omega} = \begin{pmatrix} 3 - \omega - \omega^2 & -1 \\ -1 & 3 - \omega - \omega^2 \end{pmatrix} = \begin{pmatrix} +4 & -1 \\ -1 & +4 \end{pmatrix}, \text{ since } 1 + \omega + \omega^2 = 0. \text{ Solving the characteristic equation}$ $\det(\mu I - L_{\omega}) = \det\begin{pmatrix} \mu - 4 & 1 \\ 1 & \mu - 4 \end{pmatrix} = \mu^2 - 8\mu + 15 = 0 \text{ yields eigenvalues of 3 and 5, where 5 corresponds to the}$ $eigenvector \ u_1 - u_2 = \begin{pmatrix} 1 \\ \omega \\ \omega^2 \\ -1 \\ -\omega \\ -\omega^2 \end{pmatrix} \text{ and 3 corresponds to the eigenvector } u_1 + u_2 = \begin{pmatrix} 1 \\ \omega \\ \omega^2 \\ 1 \\ \omega \\ \omega^2 \end{pmatrix}.$

So in sum, we have six eigenvalues, two pairs of which are identical, with the following eigenvectors:

$$\mu = 0: (+1 + 1 + 1 + 1 + 1 + 1)^{T} \\ \mu = 2: (+1 + 1 + 1 - 1 - 1 - 1)^{T} \end{bmatrix} in the 1 - eigenspace of P \\ \mu = 3: (+1 + \omega + \omega^{2} + 1 + \omega + \omega^{2})^{T} and its complex - conjugate \\ \mu = 5: (+1 + \omega + \omega^{2} - 1 - \omega^{2} - \omega^{2})^{T} and its complex - conjugate \\ \end{bmatrix} in the \omega - and \omega^{2} - eigenspaces of P \\ \mu = 5: (+1 + \omega + \omega^{2} - 1 - \omega^{2} - \omega^{2})^{T} and its complex - conjugate \\ \end{bmatrix}$$

Graph-Theoretic Methods 3 of 4

If we want real eigenvectors, we can add and subtract the complex eigenvectors and their complex-conjugates, yielding (for example) an eigenvector $(+2 \ -1 \ -1 \ +2 \ -1 \ -1)^T$ of eigenvalue 3.

Finally, note also that there is another permutation matrix, Q, of period two, that commutes with L. Why did we use P instead of Q?