Graph-Theoretic Methods

Homework \#1 (2020-2021), Answers

Q1: Graph Laplacians

Consider the following graph.

A. Write its graph Laplacian L.

From the definition $L=D-A$, the difference of the diagonal matrix of the degrees (D) and the adjacency matrix,
$L=\left(\begin{array}{cccccc}+3 & -1 & -1 & -1 & 0 & 0 \\ -1 & +3 & -1 & 0 & -1 & 0 \\ -1 & -1 & +3 & 0 & 0 & -1 \\ -1 & 0 & 0 & +3 & -1 & -1 \\ 0 & -1 & 0 & -1 & +3 & -1 \\ 0 & 0 & -1 & -1 & -1 & +3\end{array}\right)$
B. Based on the symmetry of the graph, write a permutation matrix $P \neq I$ that commutes with L, for which $P^{3}=I$.
Since the connectivity of the graph is unchanged following the permutation $\left(A_{1} A_{2} A_{3}\right)\left(A_{4} A_{5} A_{6}\right)$, we can take
$P=\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right)$.
C. Determine the eigenvalues and eigenvectors of P.
Since $P^{3}=I$, an eigenvector v with eigenvalue λ must satisfy $v=I v=P^{3} v=\lambda^{3} v$, so $\lambda^{3}=1$, and $\lambda=1$ or $\lambda=\omega$ or $\lambda=\omega^{2}$, where $\omega=e^{2 \pi i / 3}$.

Regarding eigenvectors: P is block-diagonal, so it acts independently on two three-dimensional subspaces. If, for example, $P v=\lambda v$-- in coordinates, $P\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6}\end{array}\right)=\lambda\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{6}\end{array}\right)$-- then $x_{2}=\lambda x_{1}, x_{3}=\lambda x_{2}, x_{1}=\lambda x_{3}$, and $x_{5}=\lambda x_{4}$, $x_{6}=\lambda x_{5}, x_{4}=\lambda x_{6}$, so $v=\left(\begin{array}{c}a \\ \lambda a \\ \lambda^{2} a \\ b \\ \lambda b \\ \lambda^{2} b\end{array}\right)$, where $\lambda \in\left\{1, \omega, \omega^{2}\right\}$, and at least one of a and b are nonzero. Choosing $(a, b)=(1,0)$ and $(a, b)=(0,1)$ thus displays six eigenvectors of P, as consisting of three pairs (one for each $\lambda \in\left\{1, \omega, \omega^{2}\right\}$). Within each pair, linear combinations are also eigenvectors. That is, the vector space in which P and L act is decomposed into three two-dimensional subspaces, one for each of the three distinct eigenvalues of P. See also Question 2 from Linear Transformations and Group Representations Homework 1 (LTGR2021aHW).

D. Using $P L=L P$, determine the eigenvectors and eigenvalues of L.

The eigenvectors for L must lie wholly within each of the three two-dimensional subspaces outlined above. (Other than an intuitive argument based on symmetry), the formal reason for this is the following. If $P v=\lambda v$, then $P(L v)=L(P v)=\lambda(L v)$. So if v is in the eigenspace corresponding to λ, then so is $L v$. So we can see how L acts on the eigenspace corresponding to λ (where $\lambda \in\left\{1, \omega, \omega^{2}\right\}$) by choosing a convenient basis,
$u_{1}(\lambda)=\left(\begin{array}{c}1 \\ \lambda \\ \lambda^{2} \\ 0 \\ 0 \\ 0\end{array}\right)$ and $u_{2}(\lambda)=\left(\begin{array}{c}0 \\ 0 \\ 0 \\ 1 \\ \lambda \\ \lambda^{2}\end{array}\right)$, and a generic element of the eigenspace, $a u_{1}+b u_{2}$.
$L\left(a u_{1}+b u_{2}\right)=\left(\begin{array}{cccccc}3 & -1 & -1 & -1 & 0 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ -1 & -1 & 3 & 0 & 0 & -1 \\ -1 & 0 & 0 & 3 & -1 & -1 \\ 0 & -1 & 0 & -1 & 3 & -1 \\ 0 & 0 & -1 & -1 & -1 & 3\end{array}\right)\left(\begin{array}{c}a \\ \lambda a \\ \lambda^{2} a \\ b \\ \lambda b \\ \lambda^{2} b\end{array}\right)=\left(\begin{array}{c}\left(3-\lambda-\lambda^{2}\right) a-b \\ \left(-1+3 \lambda-\lambda^{2}\right) a-\lambda b \\ \left(-1-\lambda-3 \lambda^{2}\right) a-\lambda^{2} b \\ -a+\left(3-\lambda-\lambda^{2}\right) b \\ -a \lambda+\left(-1+3 \lambda-\lambda^{2}\right) b \\ -a^{2} \lambda+\left(-1-\lambda+3 \lambda^{2}\right) b\end{array}\right)=$
$=\left(\left(3-\lambda-\lambda^{2}\right) a-b\right) u_{1}+\left(-a+\left(3-\lambda-\lambda^{2}\right) b\right) u_{2}$
Note that $\lambda^{3}=1$ was crucial for this, and this holds for $\lambda \in\left\{1, \omega, \omega^{2}\right\}$.

With $(a, b)=(1,0), L u_{1}=\left(3-\lambda-\lambda^{2}\right) u_{1}-u_{2}$. With $(a, b)=(0,1), L u_{2}=-u_{1}+\left(3-\lambda-\lambda^{2}\right) u_{2}$. So, in the eigenspace corresponding to λ, L acts like the transformation

$$
L_{\lambda}=\left(\begin{array}{cc}
3-\lambda-\lambda^{2} & -1 \\
-1 & 3-\lambda-\lambda^{2}
\end{array}\right)
$$

We therefore need to find the eigenvalues and eigenvectors of the above transformation, and can reconstitute them in the full 6-dimensional space from the definitions of u_{1} and u_{2}.

Considering first $\lambda=1$ so $L_{1}=\left(\begin{array}{cc}+1 & -1 \\ -1 & +1\end{array}\right)$: The eigenvalues are $\{2,0\}$, either by inspection or by solving the characteristic equation $\operatorname{det}\left(\mu I-L_{1}\right)=\operatorname{det}\left(\begin{array}{cc}\mu-1 & 1 \\ 1 & \mu-1\end{array}\right)=\mu^{2}-2 \mu=0 \quad \mu=2$ corresponds to the eigenvector
$u_{1}-u_{2}=\left(\begin{array}{l}+1 \\ +1 \\ +1 \\ -1 \\ -1 \\ -1\end{array}\right), \mu=0$ corresponds to the eigenvector $u_{1}+u_{2}=\left(\begin{array}{c}+1 \\ +1 \\ +1 \\ +1 \\ +1 \\ +1\end{array}\right)$, the trivial eigenvector of a connected
graph.
$\lambda=\omega$ and $\lambda=\omega^{2}$ can be considered together, as ω and ω^{2} are complex-conjugates.
$L_{\omega}=\left(\begin{array}{cc}3-\omega-\omega^{2} & -1 \\ -1 & 3-\omega-\omega^{2}\end{array}\right)=\left(\begin{array}{cc}+4 & -1 \\ -1 & +4\end{array}\right)$, since $1+\omega+\omega^{2}=0$. Solving the characteristic equation $\operatorname{det}\left(\mu I-L_{\omega}\right)=\operatorname{det}\left(\begin{array}{cc}\mu-4 & 1 \\ 1 & \mu-4\end{array}\right)=\mu^{2}-8 \mu+15=0$ yields eigenvalues of 3 and 5 , where 5 corresponds to the
eigenvector $u_{1}-u_{2}=\left(\begin{array}{c}1 \\ \omega \\ \omega^{2} \\ -1 \\ -\omega \\ -\omega^{2}\end{array}\right)$ and 3 corresponds to the eigenvector $u_{1}+u_{2}=\left(\begin{array}{c}1 \\ \omega \\ \omega^{2} \\ 1 \\ \omega \\ \omega^{2}\end{array}\right)$.
So in sum, we have six eigenvalues, two pairs of which are identical, with the following eigenvectors:
$\left.\begin{array}{l}\mu=0:\left(\begin{array}{llllll}+1 & +1 & +1 & +1 & +1 & +1\end{array}\right)^{T} \\ \mu=2:\left(\begin{array}{lllll}+1 & +1 & +1 & -1 & -1\end{array}\right. \\ -1\end{array}\right)^{T}$. inthe1-eigenspace of P
$\mu=3:\left(+1+\omega+\omega^{2}+1+\omega+\omega^{2}\right)^{T}$ and its complex-conjugate
$\mu=5:\left(\begin{array}{llllll}+1 & +\omega & +\omega^{2} & -1 & -\omega^{2} & -\omega^{2}\end{array}\right)^{T}$ and its complex - conjugate

Graph-Theoretic Methods 3 of 4

If we want real eigenvectors, we can add and subtract the complex eigenvectors and their complex-conjugates, yielding (for example) an eigenvector $\left(\begin{array}{llllll}+2 & -1 & -1 & +2 & -1 & -1\end{array}\right)^{T}$ of eigenvalue 3.

Finally, note also that there is another permutation matrix, Q, of period two, that commutes with L. Why did we use P instead of Q ?

