Linear Systems and Black Boxes
Homework \#2 (2020-2021), Answers

Q1: Biased random walks

Here we extend the analysis in the notes to a random walk with a directional bias. We allow the particle to move a step of size b to the right or left, but with unequal probability, so that the probability distribution at time $t+\Delta T$ is related to the probability at time t by convolution with $F_{\Delta T}(x)=\left(p_{-} \delta(x-b)+p_{+} \delta(x+b)\right)$, where $p_{-}=\frac{1}{2}(1-c)$ and $p_{+}=\frac{1}{2}(1+c)$.
A. Calculate $\hat{F}_{\Delta T}(\omega)=\int_{-\infty}^{\infty} F_{\Delta T}(x) e^{-i \omega x} d x$
$\hat{F}_{\Delta T}(\omega)=\int_{-\infty}^{\infty} F_{\Delta T}(x) e^{-i \omega x} d x=\int_{-\infty}^{\infty} \frac{1}{2}((1-c) \delta(x-b)+(1+c \delta)(x+b)) e^{-i \omega x} d x$
$=\frac{1}{2}\left((1-c) e^{-i \omega b}+(1+c) e^{i \omega b}\right)=\frac{1}{2}\left(e^{-i \omega b}+e^{i \omega b}\right)+\frac{1}{2} c\left(-e^{-i \omega b}+e^{i \omega b}\right)=\cos (\omega b)+i c \sin (\omega b)$
where the last step used $\cos u=\frac{e^{i u}+e^{-i u}}{2}$ and $\sin u=\frac{e^{i u}-e^{-i u}}{2 i}$.
B. Determine how the probability distribution evolves over time T by determining $\left(\hat{F}_{\Delta T}(\omega)\right)^{T / \Delta T}$ in the limit of $\Delta T \rightarrow 0$ with (as in the text) $b^{2}=A \Delta T$ but also $c^{2}=C \Delta T$.

As $\Delta T \rightarrow 0$, both b and c are small. For small b and c, $\hat{F}_{\Delta T}(\omega)=\cos (\omega b)+i c \sin (\omega b) \approx 1-\frac{1}{2} \omega^{2} b^{2}+i b c \omega=1-\frac{1}{2} \omega^{2} A \Delta T+i \omega \sqrt{A C} \Delta T$, with the omitted terms decreasing as $(\Delta T)^{2}$ or faster. So
$\lim _{\Delta T \rightarrow 0}\left(\hat{F}_{\Delta T}(\omega)\right)^{T / \Delta T}=\lim _{\Delta T \rightarrow 0}\left(1-\left(\frac{1}{2} \omega^{2} A-i \omega \sqrt{A C}\right) \Delta T\right)^{T / \Delta T}=\exp -\left(\frac{1}{2} \omega^{2} A T-i \omega T \sqrt{A C}\right)$.
C. Given a distribution $q_{0}(x)=\delta(x)$ at time 0 , determine the distribution at time T via Fourier synthesis.
$\hat{q}_{T}(\omega)=\hat{F}_{T}(\omega) \hat{q}(0)=e^{-\omega^{2} A T / 2-i \omega T \sqrt{A C}}$. The Fourier synthesis for the unbiased walk (in the notes) will be helpful.
$q_{T}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{q}_{T}(\omega) e^{i \omega x} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\omega^{2} A T / 2-i \omega T \sqrt{A C}} e^{i \omega x} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\omega^{2} A T / 2+i \omega(x-T \sqrt{A C})} d \omega$.
Note that this is the same integral as in the text for the symmetric case,
$p_{T}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \hat{p}_{T}(\omega) e^{i \omega x} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-\omega^{2} A T / 2} e^{i \omega x} d \omega=\frac{1}{\sqrt{2 \pi A T}} e^{-x^{2} / 2 A T}$, except that x is replaced by
$x-T \sqrt{A C}$. So $q_{T}(x)=p_{T}(x-T \sqrt{A C})=\frac{1}{\sqrt{2 \pi A T}} e^{-(x-T \sqrt{A C})^{2} / 2 A T}$. That is, the bias adds a positional offset that increases linearly with time.

Q2: Another biased random walk
In this random walk, the step probabilities are equal, but the step sizes are not: So the probability distribution at time $t+\Delta T$ is related to the probability at time t by convolution with $F_{\Delta T}(x)=\frac{1}{2}\left(\delta\left(x-b_{-}\right)+\delta\left(x+b_{+}\right)\right)$, where $b_{-}=b-s$, and $b_{+}=b+s$.
A. Calculate $\hat{F}_{\Delta T}(\omega)=\int_{-\infty}^{\infty} F_{\Delta T}(x) e^{-i \omega x} d x$
$\hat{F}_{\Delta T}(\omega)=\int_{-\infty}^{\infty} F_{\Delta T}(x) e^{-i \omega x} d x=\int_{-\infty}^{\infty} \frac{1}{2}\left(\delta\left(x-b_{-}\right)+\delta\left(x+b_{+}\right)\right) e^{-i \omega x} d x$
$=\frac{1}{2}\left(e^{-i \omega b+i \omega s}+e^{i \omega b+i \omega s}\right)=\frac{1}{2}\left(e^{-i \omega b}+e^{i \omega b}\right) e^{i \omega s}$
where the last step evaluated the integrand at $x=b_{-}=b-s$ and $x=-b_{+}=-b-s$.
B. Determine how the probability distribution evolves over time T by determining $\left(\hat{F}_{\Delta T}(\omega)\right)^{T / \Delta T}$ in the limit of $\Delta T \rightarrow 0$ with (as in the text) $b^{2}=A \Delta T$ but also $s=S \Delta T$.

As $\Delta T \rightarrow 0$, both b and s are small. For small b and s, $\hat{F}_{\Delta T}(\omega)=\cos (\omega b) e^{i \omega s} \approx\left(1-\frac{1}{2} \omega^{2} b^{2}\right)(1+i \omega s) \approx 1-\frac{1}{2} \omega^{2} A \Delta T+i \omega S \Delta T$, with the omitted terms decreasing as $(\Delta T)^{2}$ or faster. So
$\lim _{\Delta T \rightarrow 0}\left(\hat{F}_{\Delta T}(\omega)\right)^{T / \Delta T}=\lim _{\Delta T \rightarrow 0}\left(1-\left(\frac{1}{2} \omega^{2} A-i \omega S\right) \Delta T\right)^{T / \Delta T}=\exp -\left(\frac{1}{2} \omega^{2} A T-i \omega S T\right)$
C. Can this behavior be distinguished from that of the biased random walk in Q1? Why or why not?

No, they cannot be distinguished as their evolution with time is identical: with $S=\sqrt{A T}$ the expressions for $\lim _{\Delta T \rightarrow 0}\left(\hat{F}_{\Delta T}(\omega)\right)^{T / \Delta T}$ are equal.

