Linear Systems and Black Boxes

Homework #2 (2020-2021), Questions

Q1: Biased random walks

Here we extend the analysis in the notes to a random walk with a directional bias. We allow the particle to move a step of size *b* to the right or left, but with unequal probability, so that the probability distribution at time $t + \Delta T$ is related to the probability at time *t* by convolution with $F_{\Delta T}(x) = (p_{-}\delta(x-b) + p_{+}\delta(x+b))$,

where
$$p_{-} = \frac{1}{2}(1-c)$$
 and $p_{+} = \frac{1}{2}(1+c)$.
A. Calculate $\hat{F}_{\Delta T}(\omega) = \int_{-\infty}^{\infty} F_{\Delta T}(x)e^{-i\omega x}dx$

B. Determine how the probability distribution evolves over time *T* by determining $(\hat{F}_{\Delta T}(\omega))^{T/\Delta T}$ in the limit of $\Delta T \to 0$ with (as in the text) $b^2 = A\Delta T$ but also $c^2 = C\Delta T$.

C. Given a distribution $q_0(x) = \delta(x)$ at time 0, determine the distribution at time *T* via Fourier synthesis. $\hat{q}_T(\omega) = \hat{F}_T(\omega)\hat{q}(0) = e^{-\omega^2 AT/2 - i\omega T \sqrt{AC}}$. The Fourier synthesis for the unbiased walk (in the notes) will be helpful.

Q2: Another biased random walk

In this random walk, the probabilities are equal, but the step sizes are not: So the probability distribution at time $t + \Delta T$ is related to the probability at time t by convolution with $F_{\Delta T}(x) = \frac{1}{2} (\delta(x-b_{-}) + \delta(x+b_{+}))$, where $b_{-} = b - s$, and $b_{+} = b + s$. A. Calculate $\hat{F}_{\Delta T}(\omega) = \int_{-\infty}^{\infty} F_{\Delta T}(x)e^{-i\omega x}dx$

B. Determine how the probability distribution evolves over time *T* by determining $(\hat{F}_{\Delta T}(\omega))^{T/\Delta T}$ in the limit of $\Delta T \to 0$ with (as in the text) $b^2 = A\Delta T$ but also $s = S\Delta T$.

C. Can this behavior be distinguished from that of the biased random walk in Q1? Why or why not?