Q1: Biased random walks
Here we extend the analysis in the notes to a random walk with a directional bias. We allow the particle to move a step of size b to the right or left, but with unequal probability, so that the probability distribution at time $t+\Delta T$ is related to the probability at time t by convolution with $F_{\Delta T}(x)=\left(p_{-} \delta(x-b)+p_{+} \delta(x+b)\right)$, where $p_{-}=\frac{1}{2}(1-c)$ and $p_{+}=\frac{1}{2}(1+c)$.
A. Calculate $\hat{F}_{\Delta T}(\omega)=\int_{-\infty}^{\infty} F_{\Delta T}(x) e^{-i \omega x} d x$
B. Determine how the probability distribution evolves over time T by determining $\left(\hat{F}_{\Delta T}(\omega)\right)^{T / \Delta T}$ in the limit of $\Delta T \rightarrow 0$ with (as in the text) $b^{2}=A \Delta T$ but also $c^{2}=C \Delta T$.
C. Given a distribution $q_{0}(x)=\delta(x)$ at time 0 , determine the distribution at time T via Fourier synthesis. $\hat{q}_{T}(\omega)=\hat{F}_{T}(\omega) \hat{q}(0)=e^{-\omega^{2} A T / 2-i \omega T \sqrt{A C}}$. The Fourier synthesis for the unbiased walk (in the notes) will be helpful.

Q2: Another biased random walk
In this random walk, the probabilities are equal, but the step sizes are not: So the probability distribution at time $t+\Delta T$ is related to the probability at time t by convolution with $F_{\Delta T}(x)=\frac{1}{2}\left(\delta\left(x-b_{-}\right)+\delta\left(x+b_{+}\right)\right)$, where $b_{-}=b-s$, and $b_{+}=b+s$.
A. Calculate $\hat{F}_{\Delta T}(\omega)=\int_{-\infty}^{\infty} F_{\Delta T}(x) e^{-i \omega x} d x$
B. Determine how the probability distribution evolves over time T by determining $\left(\hat{F}_{\Delta T}(\omega)\right)^{T / \Delta T}$ in the limit of $\Delta T \rightarrow 0$ with (as in the text) $b^{2}=A \Delta T$ but also $s=S \Delta T$.
C. Can this behavior be distinguished from that of the biased random walk in Q1? Why or why not?

