Homework \#3 (2020-2021), Questions
Q1: Spectra of some other renewal processes
This is a computational exercise about non-Poisson renewal processes. A "gamma process" of order m (here, $m>0)$ and rate λ is a renewal process whose renewal density is $g_{m}(t ; \lambda)=\frac{t^{m-1}(\lambda m)^{m}}{\Gamma(m)} e^{-t \lambda m} .(\Gamma(m)$ is the gamma-function, $\Gamma(m)=\int_{0}^{\infty} u^{m-1} e^{-u} d u$, and $\Gamma(m)=(m-1)$! for $\left.m=1,2,3, \ldots\right)$. Note that g_{m} is properly normalized: $\int_{0}^{\infty} g_{m}(t ; \lambda) d t=\frac{1}{\Gamma(m)} \int_{0}^{\infty} t^{m-1}(\lambda m)^{m} e^{-t \lambda m} d t=\frac{1}{\Gamma(m)} \int_{0}^{\infty} u^{m-1} e^{-u} d u=1$, with second step using $u=t \lambda m$. For integers $m \geq 1$, a gamma-process can be derived from a Poisson process of rate λm by taking every m th event. We don't show this here; see supplementary material below.

What this means is that the renewal density for $g_{m}(t)$ is the m-fold convolution of the renewal density of a Poisson process of rate $m \lambda$, with itself. Since convolution in the time domain is multiplication in the frequency domain, it follows that $\tilde{g}_{m}(\omega ; \lambda)=\left(\frac{1}{1+\frac{i \omega}{m \lambda}}\right)^{m}$-- as shown in the supplementary material below. Using this as a starting point:

A: Plot the renewal density of a gamma process of order m, i.e., $g_{m}(t ; \lambda)=\frac{t^{m-1}(\lambda m)^{m}}{\Gamma(m)} e^{-t \lambda m}$, for a few values of m and λ.
B. Plot the corresponding power spectra.
C. How do you interpret the behavior of the power spectrum as $\omega \rightarrow 0$ and as $\omega \rightarrow \infty$?
D. For what value of m does the power spectrum first have a peak at a nonzero frequency?

Q2-Q4 concern the "global coherence, which is a kind of generalization of pairwise coherence. See Cimenser et al., "Tracking brain states under general anesthesia using global coherence analysis", PNAS 108, 8832-8837.

Q2: Cross-spectral matrix and global coherence: definition and basic properties
Say we have a set $X_{1}, X_{2}, \ldots, X_{N}$ of random signals. Let $P_{X_{j}, X_{k}}(\omega)$ is the cross-spectrum of X_{j} and X_{k}. The cross-spectral matrix $M(\omega)$ is defined as the matrix whose elements $M_{j, k}(\omega)=P_{X_{j}, X_{k}}(\omega)$. The global coherence at the frequency ω is defined as the ratio of the largest eigenvalue of $M(\omega)$ to the sum of its eigenvalues.
A. Is $M(\omega)$ self-adjoint?
B. Part A means that the eigenvalues of $M(\omega)$ are real. Here we show that they also must be non-negative.

First, show that if a matrix A has the property that $z^{*} A z$ is real and non-negative for all vectors $z=\left(\begin{array}{c}z_{1} \\ z_{2} \\ \vdots \\ z_{N}\end{array}\right)$
(where z^{*} is the conjugate transpose of z), then all eigenvalues of A are non-negative. Then, using the definition of the cross-spectrum in terms of Fourier estimates, $P_{X, Y}(\omega)=\lim _{T \rightarrow \infty} \frac{1}{T}\langle F(x, \omega, T, 0) \overline{F(y, \omega, T, 0)}\rangle$, show that for any vector $z(\omega)=\left(\begin{array}{c}z_{1}(\omega) \\ z_{2}(\omega) \\ \vdots \\ z_{N}(\omega)\end{array}\right)$, that $z^{*}(\omega) M(\omega) z(\omega) \geq 0$.
C. What is the smallest possible value of the global coherence of N signals?
$1 / N$: Since the eigenvalues are non-negative and sum to the trace, the largest eigenvalue must be at least $1 / N$ th of the trace.

Q3: Global coherence: a single, common noise source
A. Consider the following system, in which each of the signals X_{j} are generated by a separate linear filter L_{j} acting on the same noise input $s(t)$, whose power spectrum is $P_{S}(\omega)$. . Determine $P_{X_{j}, X_{k}}(\omega)$ in terms of and $P_{S}(\omega)$ and the transfer functions $\tilde{L}_{j}(\omega)$ and $\tilde{L}_{k}(\omega)$ of L_{j} and L_{k}.

B. Show that the vector $v(\omega)=\left(\begin{array}{c}\tilde{L}_{1}(\omega) \\ \tilde{L}_{2}(\omega) \\ \vdots \\ \tilde{L}_{N}(\omega)\end{array}\right)$ is an eigenvector of the cross-spectral matrix $M(\omega)$, and find its corresponding eigenvalue.

Q4. Now consider the following system, where $s(t)$ and $s^{\prime}(t)$ are independent noises, with power spectra $P_{X_{j}, X_{k}}(\omega) \quad P_{S}(\omega)$ and $P_{S^{\prime}}(\omega)$; the rest of the set-up is as above.

A. Determine $P_{X_{j}, X_{k}}(\omega)$
B. Show that the range of the cross-spectral matrix $M(\omega)$ is of dimension at most 2 .

Here we determine the Fourier transform of the renewal density of a gamma process. We do this by finding the renewal density of a gamma process of order m and rate λ / m (rather than rate λ), since - as the calculation will show - this is the m-fold convolution of the renewal density of a Poisson process of rate λ. That is, we determine the Fourier transform of $s_{m}(t ; \lambda)=g_{m}(t ; \lambda / m)=\frac{t^{m-1} \lambda^{m}}{\Gamma(m)} e^{-t \lambda}$.
We do this via a method, "generating functions", that is widely useful, produces the answer for all m at once. The idea is that we look at $S(t, y ; \lambda)=\sum_{m=1}^{\infty} y^{m-1} s_{m}(t ; \lambda)$, and compute its Fourier transform. Since $\tilde{S}(\omega, y ; \lambda)=\int_{0}^{\infty} S(t, y ; \lambda) e^{-i \omega t} d t=\int_{0}^{\infty} \sum_{m=1}^{\infty} y^{m-1} s_{m}(t ; \lambda) d t=\sum_{m=1}^{\infty} y^{m-1} \tilde{s}_{m}(\omega ; \lambda)$, we can then pull out the terms involving y^{m-1} in $\tilde{S}(\omega, y ; \lambda)$ to get the Fourier transform $\tilde{s}_{m}(\omega ; \lambda)$ of $s_{m}(t ; \lambda)$.

The generating-function method works because $S(t, y ; \lambda)$ has a nice form:
$S(t, y ; \lambda)=\sum_{m=1}^{\infty} y^{m-1} S_{m}(t ; \lambda)=\sum_{m=1}^{\infty} y^{m-1} \frac{t^{m-1} \lambda^{m}}{\Gamma(m)} e^{-t \lambda}=\lambda e^{-t \lambda} \sum_{m=1}^{\infty} \frac{y^{m-1} t^{m-1} \lambda^{m-1}}{\Gamma(m)}$
$=\lambda e^{-t \lambda} \sum_{n=0}^{\infty} \frac{(y t \lambda)^{n}}{\Gamma(n+1)}=\lambda e^{-t \lambda} \sum_{n=0}^{\infty} \frac{(y t \lambda)^{n}}{n!}=\lambda e^{-t \lambda+y t \lambda}$
So,
$\tilde{S}(\omega, y ; \lambda)=\int_{0}^{\infty} S(t, y ; \lambda) e^{-i \omega t} d t=\int_{0}^{\infty} \lambda e^{-t \lambda+y t \lambda} e^{-i \omega t} d t$
$=\left.\lambda \frac{1}{-\lambda+y \lambda-i \omega} e^{-t \lambda+y t \lambda} e^{-i \omega t}\right|_{0} ^{\infty}=\lambda \frac{1}{\lambda+i \omega-y \lambda}=\frac{\lambda}{\lambda+i \omega} \frac{1}{1-\frac{\lambda y}{\lambda+i \omega}}$.
Note that the final expression is of the form $a \frac{1}{1-r y}$, the sum of a geometric series whose nth term is $a r^{n} y^{n}$.
So the term involving y^{m-1} is $\frac{\lambda}{\lambda+i \omega}\left(\frac{\lambda}{\lambda+i \omega}\right)^{m-1} y^{m-1}=\left(\frac{\lambda}{\lambda+i \omega}\right)^{m} y^{m-1}$. So, the Fourier transform $\tilde{s}_{m}(\omega ; \lambda)$ of
$s_{m}(t ; \lambda)$ is the coefficient of y^{m-1} in this term, namely, $\left(\frac{\lambda}{\lambda+i \omega}\right)^{m}$. So $\tilde{s}_{m}(\omega ; \lambda)=\left(\frac{\lambda}{\lambda+i \omega}\right)^{m}=\left(\frac{1}{1+\frac{i \omega}{\lambda}}\right)^{m}$,
corresponding to the m-fold convolution of the Poisson renewal density with itself.
Finally,
$g_{m}(t ; \lambda)=s_{m}(t ; m \lambda)$, so $\quad \tilde{g}_{m}(\omega ; \lambda)=\tilde{s}_{m}(\omega ; m \lambda)=\left(\frac{1}{1+\frac{i \omega}{m \lambda}}\right)^{m}$.

