
Linear Systems, Black Boxes, and Beyond 
 
Homework #3 (2020-2021), Questions 
 
Q1: Spectra of some other renewal processes 
 
This is a computational exercise about non-Poisson renewal processes.  A “gamma process” of order m  (here, 

0m ) and rate   is a renewal process whose renewal density is 
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u t m .   For integers 1m , a gamma-process can be derived from a Poisson process of rate m  by taking 
every m th event.  We don’t show this here; see supplementary material below.  
 
What this means is that the renewal density for ( )mg t  is the m -fold convolution of the renewal density of a 
Poisson process of rate m , with itself.   Since convolution in the time domain is multiplication in the 
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Using this as a starting point: 
 

A: Plot the renewal density of a gamma process of order m , i.e., 
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, for a few values of 

m  and  . 
B. Plot the corresponding power spectra. 
C. How do you interpret the behavior of the power spectrum as 0  and as  ? 
D. For what value of  m  does the power spectrum first have a peak at a nonzero frequency? 
 
 
 
Q2-Q4 concern the “global coherence, which is a kind of generalization of pairwise coherence. See Cimenser et 
al., “Tracking brain states under general anesthesia using global coherence analysis”, PNAS 108, 8832-8837. 
 
Q2:  Cross-spectral matrix and global coherence: definition and basic properties 
 
Say we have a set 1 2, ,..., NX X X  of random signals. Let , ( )

j kX XP   is the cross-spectrum of jX  and kX .  The 

cross-spectral matrix ( )M   is defined as the matrix whose elements , ,( ) ( )
j kj k X XM P  . The global 

coherence at the frequency   is defined as the ratio of the largest eigenvalue of ( )M   to the sum of its 
eigenvalues. 
A.  Is ( )M   self-adjoint? 
 
B. Part A means that the eigenvalues of ( )M   are real.  Here we show that they also must be non-negative. 



First, show that if a matrix A  has the property that z Az  is real and non-negative for all vectors 
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(where z  is the conjugate transpose of z ), then all eigenvalues of A  are non-negative.  
Then, using the definition of the cross-spectrum in terms of Fourier  estimates, 
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, that  
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C.  What is the smallest possible value of the global coherence of N  signals? 
1/ N : Since the eigenvalues are non-negative and sum to the trace, the largest eigenvalue must be at least 
1/ N th of the trace.  
 
 
Q3: Global coherence:  a single, common noise source 
 
A.  Consider the following system, in which each of the signals jX  are generated by a separate linear filter jL  
acting on the same noise input ( )s t , whose power spectrum is ( ).SP  .  Determine  , ( )

j kX XP   in terms of  and 

( )SP   and the transfer functions ( )jL   and ( )kL   of jL  and kL .  
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B. Show that the vector 
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 is an eigenvector of the cross-spectral matrix ( )M  , and find its 

corresponding eigenvalue. 
 
 



Q4. Now consider the following system, where  ( )s t  and  ( )s t  are independent noises, with power spectra 

, ( )
j kX XP     ( )SP   and ( )SP  ; the rest of the set-up is as above.  
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A. Determine  , ( )

j kX XP    
B. Show that the range of the cross-spectral matrix ( )M   is of dimension at most 2.   
 



Supplementary material for Q1 about gamma processes 
 
Here we determine the Fourier transform of the renewal density of a gamma process.  We do this by finding the 
renewal density of a gamma process of order m  and rate / m  (rather than rate  ), since – as the calculation 
will show – this is the m -fold convolution of the renewal density of a Poisson process of rate  .  That is, we 

determine the Fourier transform of 
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We do this via a method, “generating functions”, that is widely useful, produces the answer for all m  at once.  
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involving 1my   in ( , ; )S y   to get the Fourier transform ( ; )ms    of ( ; )ms t  .  
 
The generating-function method works because ( , ; )S t y   has a nice form:  
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Note that the final expression is of the form 1
1

a
ry

, the sum of a geometric series whose n th term is n nar y .  

So the term involving 1my   is 
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corresponding to the m -fold convolution of the Poisson renewal density with itself.   
 
Finally,  
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