Linear Transformations and Group Representations

Homework #1 (2020-2021), Answers

Q1: Eigenvalues and eigenvectors of a rotation matrix. Let $A = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$. *Use the characteristic equation to find its eigenvalues, and then find its eigenvectors.*

Eigenvalues: For the above A, $\det(zI - A) = 0$ corresponds to $\det\begin{pmatrix} z - \cos\theta & -\sin\theta \\ \sin\theta & z - \cos\theta \end{pmatrix} = 0$, i.e., $(z - \cos\theta)^2 - (-\sin\theta)(\sin\theta) = 0$, which simplifies to $z^2 - 2z\cos\theta + 1 = 0$. Solving for z via the quadratic formula, $z = \frac{2\cos\theta \pm \sqrt{4\cos^2\theta - 4}}{2} = \cos\theta \pm \sqrt{-\sin^2\theta} = \cos\theta \pm i\sin\theta = e^{\pm i\theta}$.

Eigenvectors: Say $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ is an eigenvector corresponding to the eigenvalue $e^{i\theta}$. Then $\begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = e^{i\theta} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, i.e., $\begin{pmatrix} x_1 \cos\theta + x_2 \sin\theta \\ -x_1 \sin\theta + x_2 \cos\theta \end{pmatrix} = \begin{pmatrix} e^{i\theta} x_1 \\ e^{i\theta} x_2 \end{pmatrix}$. So we need to find solutions to $\begin{cases} x_1 (\cos\theta - e^{i\theta}) + x_2 \sin\theta = 0 \\ -x_1 \sin\theta + x_2 (\cos\theta - e^{i\theta}) = 0 \end{cases}$, or (with $e^{i\theta} = \cos\theta + i\sin\theta$), to $\begin{cases} -ix_1 \sin\theta + x_2 \sin\theta = 0 \\ -x_1 \sin\theta - ix_2 \sin\theta = 0 \end{cases}$, which reduces to $\begin{cases} -ix_1 + x_2 = 0 \\ -x_1 - ix_2 = 0 \end{cases}$. This is a degenerate homogeneous system (it had to be - since if $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ is an eigenvector, then so would be any scalar multiple $\begin{pmatrix} bx_1 \\ bx_2 \end{pmatrix}$); the equations are satisfied for any $x_2 = ix_1$. So $b \begin{pmatrix} 1 \\ i \end{pmatrix}$ are eigenvectors corresponding to the eigenvalue $e^{i\theta}$. Similarly, So $b \begin{pmatrix} 1 \\ -i \end{pmatrix}$ are eigenvectors corresponding to the eigenvalue $e^{-i\theta}$.

Q2: Eigenvectors and eigenvalues of permutation matrices.

A. Cyclic permutation matrices. Let
$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$
. Note that $A \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_1 \end{pmatrix}$, i.e., Ax permutes the

entries of the vector x. Use this to write the five (very simple) equations corresponding to $Ax = \lambda x$, and thereby find the eigenvalues and eigenvectors of A.

Groups, Fields, and Vector Spaces 1 of 3

$$A\begin{pmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5 \end{pmatrix} = \lambda \begin{pmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5 \end{pmatrix} \text{ means } x_2 = \lambda x_1, \ x_3 = \lambda x_2, \ x_4 = \lambda x_3, \ x_5 = \lambda x_4, \ x_1 = \lambda x_5. \text{ Back-substituting,}$$

 $x_1 = \lambda x_5 = \lambda^2 x_4 = \lambda^3 x_3 = \lambda^4 x_2 = \lambda^5 x_1$. So, $x_1 = \lambda^5 x_1$. Since x_1 must be nonzero (otherwise all x_j would be zero) then $\lambda^5 = 1$. This means that $\lambda = e^{\frac{2\pi i}{5}}$ for any integer k. We get distinct eigenvalues for

 $k \in \{0, 1, 2, 3, 4\}$, and for each such λ_k , the eigenvectors are $b \begin{vmatrix} c \\ e^{\frac{2\pi i}{5}2k} \\ e^{\frac{2\pi i}{5}3k} \\ e^{\frac{2\pi i}{5}4k} \end{vmatrix}$.

B. More general permutation matrices. Same as part A, but with $A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$.

Here,
$$A\begin{pmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5 \end{pmatrix} = \begin{pmatrix} x_2\\ x_3\\ x_1\\ x_5\\ x_4 \end{pmatrix}$$
, so $A\begin{pmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5 \end{pmatrix} = \lambda \begin{pmatrix} x_1\\ x_2\\ x_3\\ x_4\\ x_5 \end{pmatrix}$ means $x_2 = \lambda x_1$, $x_3 = \lambda x_2$, $x_1 = \lambda x_3$, $x_5 = \lambda x_4$, $x_4 = \lambda x_5$. Back-

substituting, this breaks into two equations: $x_1 = \lambda x_3 = \lambda^2 x_2 = \lambda^3 x_1$, i.e., $x_1 = \lambda^3 x_1$, and $x_4 = \lambda x_5 = \lambda^2 x_4$, i.e., $x_4 = \lambda^2 x_4$. To ensure that the eigenvector has at least one nonzero coordinate, we need $x_1 \neq 0$ or $x_4 \neq 0$. If $x_1 \neq 0$, then $\lambda^3 = 1$ so $\lambda = e^{\frac{2\pi i}{3}k}$, with distinct eigenvalues for $k \in \{0, 1, 2, \}$, and for each such λ_k , the eigenvectors are $b \begin{pmatrix} 1 \\ e^{\frac{2\pi i}{3}k} \\ e^{\frac{2\pi i}{3}2k} \\ 0 \\ 0 \end{pmatrix}$. If $x_4 \neq 0$, then $\lambda^2 = 1$ so $\lambda = e^{\frac{2\pi i}{2}k}$, with distinct eigenvalues (+1 and -1) for $k \in \{0,1\}$, and for each such

 λ_k , the eigenvectors are $\begin{pmatrix} 0\\0\\+1\\+1 \end{pmatrix}$ and $\begin{pmatrix} 0\\0\\+1\\-1 \end{pmatrix}$.

If both $x_1 \neq 0$ and $x_4 \neq 0$ are nonzero, then we need a value of λ that satisfies both $\lambda^3 = 1$ and $\lambda^2 = 1$. This forces $\lambda = 1$, and we get eigenvectors that are linear combinations of the k = 0-solutions above, namely,

 $b \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + c \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 1 \end{pmatrix}.$

In general, any permutation breaks up into disjoint cycles, and a cycle of length k will lead to an equation like $\lambda^k = 1$, and a set of eigenvalues that is nonzero on that cycle.