Linear Transformations and Group Representations

Homework \#1 (2020-2021), Answers

Q1: Eigenvalues and eigenvectors of a rotation matrix. Let $A=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$. Use the characteristic equation to find its eigenvalues, and then find its eigenvectors.

Eigenvalues: For the above A, $\operatorname{det}(z I-A)=0$ corresponds to $\operatorname{det}\left(\begin{array}{cc}z-\cos \theta & -\sin \theta \\ \sin \theta & z-\cos \theta\end{array}\right)=0$, i.e., $(z-\cos \theta)^{2}-(-\sin \theta)(\sin \theta)=0$, which simplifies to $z^{2}-2 z \cos \theta+1=0$. Solving for z via the quadratic formula, $z=\frac{2 \cos \theta \pm \sqrt{4 \cos ^{2} \theta-4}}{2}=\cos \theta \pm \sqrt{-\sin ^{2} \theta}=\cos \theta \pm i \sin \theta=e^{ \pm i \theta}$.

Eigenvectors: Say $\binom{x_{1}}{x_{2}}$ is an eigenvector corresponding to the eigenvalue $e^{i \theta}$. Then $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\binom{x_{1}}{x_{2}}=e^{i \theta}\binom{x_{1}}{x_{2}}$, i.e., $\binom{x_{1} \cos \theta+x_{2} \sin \theta}{-x_{1} \sin \theta+x_{2} \cos \theta}=\binom{e^{i \theta} x_{1}}{e^{i \theta} x_{2}}$. So we need to find solutions to $\left\{\begin{array}{c}x_{1}\left(\cos \theta-e^{i \theta}\right)+x_{2} \sin \theta=0 \\ -x_{1} \sin \theta+x_{2}\left(\cos \theta-e^{i \theta}\right)=0\end{array}\right.$, or (with $e^{i \theta}=\cos \theta+i \sin \theta$), to $\left\{\begin{array}{l}-i x_{1} \sin \theta+x_{2} \sin \theta=0 \\ -x_{1} \sin \theta-i x_{2} \sin \theta=0\end{array}\right.$, which reduces to $\left\{\begin{array}{l}-i x_{1}+x_{2}=0 \\ -x_{1}-i x_{2}=0\end{array}\right.$. This is a degenerate homogeneous system (it had to be - since if $\binom{x_{1}}{x_{2}}$ is an eigenvector, then so would be any scalar multiple $\binom{b x_{1}}{b x_{2}}$); the equations are satisfied for any $x_{2}=i x_{1}$. So $b\binom{1}{i}$ are eigenvectors corresponding to the eigenvalue $e^{i \theta}$. Similarly, So $b\binom{1}{-i}$ are eigenvectors corresponding to the eigenvalue $e^{-i \theta}$.

Q2: Eigenvectors and eigenvalues of permutation matrices.
A. Cyclic permutation matrices. Let $A=\left(\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0\end{array}\right)$. Note that $A\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)=\left(\begin{array}{l}x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{1}\end{array}\right)$, i.e., Ax permutes the
entries of the vector x. Use this to write the five (very simple) equations corresponding to $A x=\lambda x$, and thereby find the eigenvalues and eigenvectors of A.
$A\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)=\lambda\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)$ means $x_{2}=\lambda x_{1}, x_{3}=\lambda x_{2}, x_{4}=\lambda x_{3}, x_{5}=\lambda x_{4}, x_{1}=\lambda x_{5}$. Back-substituting,
$x_{1}=\lambda x_{5}=\lambda^{2} x_{4}=\lambda^{3} x_{3}=\lambda^{4} x_{2}=\lambda^{5} x_{1}$. So, $x_{1}=\lambda^{5} x_{1}$. Since x_{1} must be nonzero (otherwise all x_{j} would be zero) then $\lambda^{5}=1$. This means that $\lambda=e^{\frac{2 \pi i}{5} k}$ for any integer k. We get distinct eigenvalues for
$k \in\{0,1,2,3,4\}$, and for each such λ_{k}, the eigenvectors are $b\left(\begin{array}{c}1 \\ e^{\frac{2 \pi i}{5} k} \\ e^{\frac{2 \pi i}{5} 2 k} \\ e^{\frac{2 \pi i}{5} 3 k} \\ e^{\frac{2 \pi i}{5} 4 k}\end{array}\right)$.
B. More general permutation matrices. Same as part A, but with $A=\left(\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0\end{array}\right)$. Here, $A\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)=\left(\begin{array}{l}x_{2} \\ x_{3} \\ x_{1} \\ x_{5} \\ x_{4}\end{array}\right)$, so $A\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)=\lambda\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)$ means $x_{2}=\lambda x_{1}, x_{3}=\lambda x_{2}, x_{1}=\lambda x_{3}, x_{5}=\lambda x_{4}, x_{4}=\lambda x_{5}$. Backsubstituting, this breaks into two equations: $x_{1}=\lambda x_{3}=\lambda^{2} x_{2}=\lambda^{3} x_{1}$, i.e., $x_{1}=\lambda^{3} x_{1}$, and $x_{4}=\lambda x_{5}=\lambda^{2} x_{4}$, i.e., $x_{4}=\lambda^{2} x_{4}$. To ensure that the eigenvector has at least one nonzero coordinate, we need $x_{1} \neq 0$ or $x_{4} \neq 0$. If $x_{1} \neq 0$, then $\lambda^{3}=1$ so $\lambda=e^{\frac{2 \pi i}{3} k}$, with distinct eigenvalues for $k \in\{0,1,2$,$\} , and for each such \lambda_{k}$, the eigenvectors are $b\left(\begin{array}{c}1 \\ e^{\frac{2 \pi i}{3} k} \\ e^{\frac{2 \pi i}{3} 2 k} \\ 0 \\ 0\end{array}\right)$.

If $x_{4} \neq 0$, then $\lambda^{2}=1$ so $\lambda=e^{\frac{2 \pi i}{2} k}$, with distinct eigenvalues (+1 and -1) for $k \in\{0,1\}$, and for each such
λ_{k}, the eigenvectors are $c\left(\begin{array}{c}0 \\ 0 \\ 0 \\ +1 \\ +1\end{array}\right)$ and $c\left(\begin{array}{c}0 \\ 0 \\ 0 \\ +1 \\ -1\end{array}\right)$.
If both $x_{1} \neq 0$ and $x_{4} \neq 0$ are nonzero, then we need a value of λ that satisfies both $\lambda^{3}=1$ and $\lambda^{2}=1$. This forces $\lambda=1$, and we get eigenvectors that are linear combinations of the $k=0$-solutions above, namely,
$b\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0 \\ 0\end{array}\right)+c\left(\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1\end{array}\right)$.
In general, any permutation breaks up into disjoint cycles, and a cycle of length k will lead to an equation like $\lambda^{k}=1$, and a set of eigenvalues that is nonzero on that cycle.

