Linear Transformations and Group Representations

Homework \#1 (2020-2021), Questions

Q1: Eigenvalues and eigenvectors of a rotation matrix. Let $A=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$. Use the characteristic equation to find its eigenvalues, and then find its eigenvectors.

Q2: Eigenvectors and eigenvalues of permutation matrices.
A. Cyclic permutation matrices. Let $A=\left(\begin{array}{ccccc}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0\end{array}\right)$. Note that $A\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right)=\left(\begin{array}{l}x_{2} \\ x_{3} \\ x_{4} \\ x_{5} \\ x_{1}\end{array}\right)$, i.e., $A x$ permutes the
entries of the vector x. Use this to write the five (very simple) equations corresponding to $A x=\lambda x$, and thereby find the eigenvalues and eigenvectors of A.
B. More general permutation matrices. Same as part A, but with $A=\left(\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0\end{array}\right)$.

