Linear Transformations and Group Representations
Homework #2 (2020-2021), Answers for Q2 only
Q2. A five-dimensional space associated with symmetric tensors in 3 dimensions.

This has a long setup and is a bit heavy on algebra, but I think it’s worthwhile to how the machinery works,
and, it will also serve as an example later on for how group representations work when the set of
transformations is not commutative. This question shows how the rotations act on the symmetric tensors in 3-
space: that there is a one-dimensional subspace that is invariant when the 3-d coordinates are rotated, and it
will demonstrate the way that the coordinate rotations act on the other 5 dimensions.

The setup is the tensor products g of elements in an n-dimensional vector space V , in which we’ve chosen
basis vectors X, X, ,..., X,. As we’ve seen, the tensor-product space V ®V has n? dimensions as it has a basis
n
consisting of the x;, @ x;, and typical members of V @V can be written as q = Zq”xi ®X; . We’ve seen that
i.j=1
an isomorphism A of V yields an isomorphism ¥, in V ®V , namely, ¥,(x ®X;) = Ax; ® Ax;. We’ve also
seen that ¥, maps the symmetric part of V ®V into itself, showing that it is an intrinsic aspect of the structure

of V®V . A basis for the symmetric part can be found by symmetrizing the basis for V ®V , and consists of

X ® X and %(Xi X X; +X; ®xi) for i = . This also showed that the symmetric part of V ®V has _n(n2+1)

dimensions.

As is suggested by the example of the diffusion tensor, it is convenient to think of symmetric tensor products as
. . . 1
quadratics, i.e., to think of x, ® x, as x*, and to think of E(Xi R X +X; @ xi) as x;x; -- because they transform

in the same way.

We now specialize the above picture two ways. First —and this is just to make things more concrete — we set
n=3. But also, we only consider the isomorphisms R of V that preserve the length:

U, (X + X +x2)=x>+x. +x2. This is equivalent to saying that V has Hilbert space structure and R
preserves the dot-product: <Rx, Ry> = <x, y> . We now have a scenario in which W, acts in a 6-dimensional
space (the quadratic polynomials in X, X,,and x,), and preserves a one-dimensional subspace of it, namely,
scalar multiples of x4 x> +xZ. So, complementary to this one-dimensional subspace, there must be a 5-
dimensional subspace in which W acts non-trivially — and the goal here is examine this action.

We choose the following basis for sym(V ®V) :
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r=x+x+x

S:i[xl2 —lxj—ix?fJ

J3 2 2

t= %(xzz — x32) . Note that this is a basis, as {r,s,t} allow for any linear combination of the x?,

U= XX,

V=XX

W= X,X,
while {u,v,w} allow for any linear combination of the cross-terms. Further, ¥ (r) =r. Side note: the
seemingly strange coefficients in front of s and t are determined so that {s,t,u,v,w} have the same mean-
squared value when averaged over a sphere.

We’ll now examine how the rotations act on the five-dimensional space spanned by {s,t,u,v,w}. Since any

rotation can be generated by composing rotations around the three coordinate axes, it suffices to consider the
following three rotations:

1o 0 \(x
R, (), given in coordinates by xz' =|0 cosf sinf||x,]|,
71 |0 —sinf cosf)|x,

cosd 0 —sind|[x
R,(#), given in coordinates by xz/ = 0 1 0 X, |, and
! sing 0 cosf )(x,

X3

/

* cosf sind 0)(x,
R,(0), given in coordinates by |x, [=|—sind cos® Of|x,|.

X, 0 0 1)(x

For each of the above, find the coordinate transformation that relates {s’,t’,u’,v/,w’} to {s,t,u,v, w}.

For R (0):

2 1 . 2 1 2 1 2 l 2]
——(=x,SiIN0+X,C080) |=—|X —=X —=X;|=S5S
S (nsing - xcost | ={ ¢ -2 -2

3

S/:%[Xlxz _%Xéz _%Xéz]_ 1 [xf _%(x2 c030+x33in0)

t/ = i(xg2 %)= %((x2 0080 + X, SN0 —(—x,sin0 + x, 0039)2) =

%(xz2 (cos® 0 —sin® 0) — x? (cos” 0 —sin’ 9)2 +4X,X, cos#sin 9) = %(xz2 — X} ) €08 26 +(X,X;)sin 26

=1c0s 260 +wsin 26
u’ = XX, = X (X, €080 + X, Sin ) = XX, C0S 6 + X, X, Sin§ = u cosf +vsin g
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V' = X/X; = X, (—X, 8IN 0 + X, C0S0) = —X,X, SiN & + X,X, COS# = —Uu sin + v cos &

=

= X;X; = (X, €00 + X, 5in 0)(—X, Sin 6 + X, c0s ) =

X; (—cos0sin )+ x; (cosOsin 0)+ x,x, (cos” 6 —sin’ 0) =
—%(xz2 —X;)(2cosdsing)+ X,x, (cos2 6 —sin? 9) = —tsin 20 +wcos 20

So, in the 5-d space, R,(¢) becomes:

s/ 1 0 0 0 0 S
t/ 0 cos26 0 0 sin20||t
u'|=|0 0 cos® sind 0 |lu
v/ 0 0 —sinf cosd 0 |lv
w'| (0 —sin26 0 0 cos20)(w

, 1 [ 12 1X/2 1X/2 1 [(chosg_xgsine)z—%xzz—£<X13in'9+X30059)2]:

L i i

—[x1 [cosze—%sm 9]—%x + X [sm 9——c0529] 3%,X, cosé)sm@]

1 1 1 1 ] 1 ]
—| (¢ —=xZ —=x%)[cos® @ —=sin* O |+ = (X5 + X; [cos 9— sm 9]——x + X [S|n29——00329]—3 X, c0sdsin 6
\/é[( 17 5% 3)[ 2 ] ( ) 5 5 X Xq
S cosze—isinzﬁ + e
2

%(xz2 + xj)[cos2 9—%sin2 ] S %t X [sin2 9—%0052 9]—3x1x3 cos@sin 9] =

w

cos’ 0—%sin2 0|+ %xj [cos2 0—1—%5in2 0]+%x§ [cos2 0 —%sin2 0+ 2sin’ § — cos® 9] —3%,X, COS #sin 0] =

s|cos? 6)—%sin2 0|+ —%xg sin’ 0+%x§ sin® 6 —3x,x, cosdsin 0] =

V3 V3 V3

tsin®d ———vsin 20 = s[l +§cos 26]—t—(1—cos 20) ——vsin 26
2 4 4 4 2

N|& Sl sle G-

s cosze—%sinze

t’:%(xg2 X)) = ;(x —(%,siN0 +x, cos@)) ;(xg—(xlsin0+xscose)2):

—%xf sinze-i—%xz2 —%xef Cos” ) — X, X, cosfsin ) =

——|X —=X; —=X; [SIN" 0 +—=X;|1——=sin“ 0| ——=X5|cos” @ +—sin” O |— XX, cosfsinf =
2[)(1 277 2 27210 2 27° 2 W
—s%sinz0+%(1+cosze)—vcosesin9:

3

t vV .
—S—(1—c0s5260)+—(3+cos26) ——sin 26
4< ) 4( ) 2

u’ = xX;, = (X c0s8 — X;5in#) X, = X,X, C0SH — X, X, Sin = ucosd —wsin 6
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V' = x{X; = (X, €0S0 — X, 5in §)(x, Sin 6 + x; cos g) =

X; C0S0sin 0 — X3 COSOin 0+ XX, (Cos” f —sin® 0) = (X — X7 ) cossin 0+ X,X, €05 20
= [xf —lxz2 —%x?f]cosesine-l—%(xz2 —x2)cosdsin d + x,x, oS 20

3

= S7Sin 20 +t%sin 20 +vcos 20

W = X;X; = X, (X SiN 0+ X, 0S ) = XX, Sin § + X,X; oSO = usin § +wcos 4 .

So, in the 5-d space, R,(¢) becomes:

NE

13 c0s26 —ﬁ(l—cos%) 0 ——sin20 0
, 4" 4 4 2
s 5 s
t/ ——3(1—00329) §+1cosze 0 —isin 20 0 |t
U= 4 4 4 2 !
N 0 0 cosd 0 —sinf '
v/ N Vv
w’ —33in 20 1sin 20 0 cos 26 0 W
0 0 sin@ 0 cosf

Computing R,(#) follows the same lines as R, (6), with t exchanged for —t and u and v exchanged. So, in
the 5-d space, R,(f) becomes:

13 c0s26 ﬁ(l—cosze) —ﬁsinZG 0 0
) 4 4 4 2
S A S
t' —3(1—00529) Sileos20 Lsinzg 0 0 ||t
u | = 4 4 4 2 U
v/ %sinze —%sinze cos 26 0 0 v
/
w 0 0 0 cosf —sind w

0 0 0 sinf cosé

One can check that all of these 5-d matrices are rotations (they have orthonormal rows and columns), and that
the all have the same trace, namely 1+ 2cos6f + 2cos26.
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