Homework \#3 (2020-2021), Answers

Q1: Computing characters

We consider the group G of all rotations and reflections of an equilateral triangle. We will designate the group elements by the way that they permute the vertices - for example, $(A B)$ is the reflection through vertex C and the opposite side $A B$ that swaps vertices A and $B,(A B C)$ is the rotation that moves A to B, B to C, and C to A. There are 6 group elements: the three pair-swaps, the two non-trivial rotations, and the identity, which we denote e.

Here we create a table of of characters several unitary representations. The first row of the table is the character of the trivial representation I, which maps every group element to 1 :

representation	$g:$	e	$(A B)$	$(B C)$	$(A C)$	$(A B C)$	$(A C B)$
trivial	$\chi_{I}(g):$	1	1	1	1	1	1

A. Considering each element of the group as a permutation on the vertices, there is a group representation S corresponding to the sign (parity) of the permutation. What is its character?
The pair-swaps are odd parity (they are explicitly a single pair-swap); the 3-cycles are equivalent to one pairswap followed by another (e.g., $(A B)$ followed by $(B C)$ is $(A C B)$. So they have even parity.

representation	$g:$	e	$(A B)$	$(B C)$	$(A C)$	$(A B C)$	$(A C B)$
trivial	$\chi_{I}(g):$	1	1	1	1	1	1
sign	$\chi_{S}(g):$	1	-1	-1	-1	1	1

B. Considering each element of the group as a rotation or reflection in the 2D plane, there is a group representation R corresponding to these 2×2 matrices. What is its character? e is the identity $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, which has trace of 2. The pair-swap $(B C)$ is a reflection across one axis (we can choose the axes however we want), so it corresponds to the matrix $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$, which has a trace of 0 . The other pair-swaps are also flips across one axis, but after a change of coordinates - which doesn't change the trace.

The 3-cycle ($A B C$) corresponds to the rotation matrix $\left(\begin{array}{cc}\cos \frac{2 \pi}{3} & \sin \frac{2 \pi}{3} \\ -\sin \frac{2 \pi}{3} & \cos \frac{2 \pi}{3}\end{array}\right)$, which has a trace of $2 \cos \frac{2 \pi}{3}=-1$.

representation	$g:$	e	$(A B)$	$(B C)$	$(A C)$	$(A B C)$	$(A C B)$
trivial	$\chi_{I}(g):$	1	1	1	1	1	1
sign	$\chi_{S}(g):$	1	-1	-1	-1	1	1
rot/ref	$\chi_{R}(g):$	2	0	0	0	-1	-1

C. Considering each group element as a permutation on the vertices, each group element can be represented as a 3×3 permutation matrix. This yields a representation P. What is its character?
The group identity e corresponds to the 3×3 identity matrix, which has a trace of 3 . A pair-swap corresponds to a 3×3 permutation matrix that has two symmetrical off-diagonal 1's (corresponding to the swap), and a third on-diagonal 1, such as $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ for $(B C)$. These have a trace of 1. The 3-cycles correspond to the permutation matrices $\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right)$ and its inverse (or transpose), and have a trace of 0 .

representation	$g:$	e	$(A B)$	$(B C)$	$(A C)$	$(A B C)$	$(A C B)$
trivial	$\chi_{I}(g):$	1	1	1	1	1	1
sign	$\chi_{S}(g):$	1	-1	-1	-1	1	1
rot/ref	$\chi_{R}(g):$	2	0	0	0	-1	-1
permutation	$\chi_{P}(g):$	3	1	1	1	0	0

D. What is the character of the direct-sum representation $S \oplus R$?

$\chi_{S \oplus R}=$	$\chi_{S}+\chi_{R}$, so:						
representation	$g:$	e	$(A B)$	$(B C)$	$(A C)$	$(A B C)$	$(A C B)$
trivial	$\chi_{I}(g):$	1	1	1	1	1	1
sign	$\chi_{S}(g):$	1	-1	-1	-1	1	1
rot/ref	$\chi_{R}(g):$	2	0	0	0	-1	-1
permutation	$\chi_{P}(g):$	3	1	1	1	0	0
sign \oplus rotation $\chi_{S \oplus R}(g):$	3	-1	-1	-1	0	0	

E. What is the character of the tensor-product representation $R \otimes R$?

$\chi_{R \otimes R}=\chi_{R}{ }^{2}$, so:							
representation	$g:$	e	$(A B)$	$(B C)$	$(A C)$	$(A B C)$	$(A C B)$
trivial	$\chi_{I}(g):$	1	1	1	1	1	1
sign	$\chi_{S}(g):$	1	-1	-1	-1	1	1
rot/ref	$\chi_{R}(g):$	2	0	0	0	-1	-1

Groups, Fields, and Vector Spaces 2 of 4

permutation	$\chi_{P}(g):$	3	1	1	1	0
sign \oplus rot/ref	$\chi_{S \oplus R}(g):$	3	-1	-1	-1	0
rot/ref \otimes rot/ref	$\chi_{R \otimes R}(g):$	4	0	0	0	1

F. Multiplication by a group element can be viewed as a permutation on the six members of the group. Writing these permutations as 6×6 permutation matrices yields the regular representation L. What is its character? The character is the trace, i.e., the sum of the elements on the diagonal, which, for a permutation matrix, is the number of elements that are unchanged. Multiplication by the identity leaves all the elements unchanged, so its character is 6 . Multiplication by any other element leaves no element unchanged, so every other group element has a character of 0 .

representation	$g:$	e	$(A B)$	$(B C)$	$(A C)$	$(A B C)$	$(A C B)$
trivial	$\chi_{I}(g):$	1	1	1	1	1	1
sign	$\chi_{S}(g):$	1	-1	-1	-1	1	1
rot/ref	$\chi_{R}(g):$	2	0	0	0	-1	-1
permutation	$\chi_{P}(g):$	3	1	1	1	0	0
sign \oplus rot/ref	$\chi_{S \oplus R}(g):$	3	-1	-1	-1	0	0
rot/ref \otimes rot/ref	$\chi_{R \otimes R}(g):$	4	0	0	0	1	1
regular	$\chi_{L}(g):$	6	0	0	0	0	0

Note that the characters at the three pairwise swaps are always identical, and the characters at the two threecycles are always identical. Why must this be?

Q2: Using characters

One result was that for any group representation A and B, the dimension of the space in which it acts trivially is given by $d(I, A)=\frac{1}{|G|} \sum_{g} \chi_{A}(g)$. For each of the above representations $I, S, R, P, S \oplus R, R \otimes R$, and L, compute $d(I, A)=\frac{1}{|G|} \sum_{g} \chi_{A}(g)$.

We shorten the work a bit by making use of the fact that characters are constant on the pair-swaps and on the three-cycles.

| representation | $g:$ | e | pair - swaps (3) |
| :---: | :---: | :---: | :---: |\quad three -cycles(2)

$$
\begin{aligned}
& d(I, R)=\frac{1}{6}(2+3 \cdot 0+2 \cdot(-1))=0 \\
& d(I, P)=\frac{1}{6}(3+3 \cdot 1+2 \cdot 0)=1 \\
& d(I, S \oplus R)=\frac{1}{6}(3+3 \cdot(-1)+2 \cdot 0)=0 \\
& d(I, R \otimes R)=\frac{1}{6}(4+3 \cdot 0+2 \cdot 1)=1 \\
& d(I, L)=\frac{1}{6}(6+3 \cdot 0+2 \cdot 0)=1
\end{aligned}
$$

