Homework \#3 (2020-2021), Questions
Q1: Computing characters
We consider the group G of all rotations and reflections of an equilateral triangle. We will designate the group elements by the way that they permute the vertices - for example, $(A B)$ is the reflection through vertex C and the opposite side $A B$ that swaps vertices A and $B,(A B C)$ is the rotation that moves A to B, B to C, and C to A. There are 6 group elements: the three pair-swaps, the two non-trivial rotations, and the identity, which we denote e.

Here we create a table of of characters several unitary representations. The first row of the table is the character of the trivial representation I, which maps every group element to 1 :

representation	$g:$	e	$(A B)$	$(B C)$	$(A C)$	$(A B C)$	$(A C B)$
trivial	$\chi_{I}(g):$	1	1	1	1	1	1

A. Considering each element of the group as a permutation on the vertices, there is a group representation S corresponding to the sign (parity) of the permutation. What is its character?

| representation $g:$
 sign $\chi_{s}(g):$ | e | $(A B)$ | $(B C)$ | $(A C)$ | $(A B C) \quad(A C B)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

B. Considering each element of the group as a rotation or reflection in the 2D plane, there is a group representation R corresponding to these 2×2 matrices. What is its character?
representation
$g: \quad e$
(AB)
(BC)
$(A C) \quad(A B C)$
(ACB)
rot/ref $\quad \chi_{R}(g):$
C. Considering each group element as a permutation on the vertices, each group element can be represented as a 3×3 permutation matrix. This yields a representation P. What is its character?

representation	$g:$	e	$(A B)$	$(B C)$	$(A C)$	$(A B C)$
permutation	$\chi_{P}(g):$					

D. What is the character of the direct-sum representation $S \oplus R$?
$\begin{array}{rlllll}\text { representation } & g & e & (A B) & (B C) & (A C)\end{array}(A B C) \quad(A C B)$
$\operatorname{sign} \oplus$ rotation $\chi_{S_{\oplus R}}(g)$:

Groups, Fields, and Vector Spaces 1 of 2
E. What is the character of the tensor-product representation $R \otimes R$?
representation $g: \quad e \quad(A B) \quad(B C) \quad(A C) \quad(A B C) \quad(A C B)$
rot/ref $\otimes \mathrm{rot} / \mathrm{ref} \quad \chi_{R \otimes R}(\mathrm{~g}):$
F. Multiplication by a group element can be viewed as a permutation on the six members of the group. Writing these permutations as 6×6 permutation matrices yields the regular representation L. What is its character? representation $g: \quad e \quad(A B) \quad(B C) \quad(A C) \quad(A B C) \quad(A C B)$ regular $\quad \chi_{L}(g):$

Q2: Using characters
One result was that for any group representation A and B, the dimension of the space in which it acts trivially is given by $d(I, A)=\frac{1}{|G|} \sum_{g} \chi_{A}(g)$. For each of the above representations $I, S, R, P, S \oplus R, R \otimes R$, and L, compute $d(I, A)=\frac{1}{|G|} \sum_{g} \chi_{A}(g)$.

