Linear Transformations and Group Representations

Homework #3 (2020-2021), Questions

Q1: Computing characters

We consider the group G of all rotations and reflections of an equilateral triangle. We will designate the group elements by the way that they permute the vertices – for example, (AB) is the reflection through vertex C and the opposite side AB that swaps vertices A and B, (ABC) is the rotation that moves A to B, B to C, and C to A. There are 6 group elements: the three pair-swaps, the two non-trivial rotations, and the identity, which we denote e.

Here we create a table of of characters several unitary representations. The first row of the table is the character of the trivial representation I, which maps every group element to 1:

representation	g:	е	(AB)	(BC)	(AC)	(ABC)	(ACB)
trivial	$\chi_I(g)$:	1	1	1	1	1	1

A. Considering each element of the group as a permutation on the vertices, there is a group representation *S* corresponding to the sign (parity) of the permutation. What is its character?

representation g: e (AB) (BC) (AC) (ABC) (ACB) sign $\chi_s(g)$:

B. Considering each element of the group as a rotation or reflection in the 2D plane, there is a group representation *R* corresponding to these 2×2 matrices. What is its character?

representation g: e (AB) (BC) (AC) (ABC) (ACB) rot/ref $\chi_R(g)$:

C. Considering each group element as a permutation on the vertices, each group element can be represented as a 3×3 permutation matrix. This yields a representation *P*. What is its character?

representation g: e (AB) (BC) (AC) (ABC) (ACB) permutation $\chi_p(g):$

D. What is the character of the direct-sum representation $S \oplus R$? representation g: e (*AB*) (*BC*) (*AC*) (*ABC*) (*ACB*) sign \oplus rotation $\chi_{S \oplus R}(g)$:

Groups, Fields, and Vector Spaces 1 of 2

E. What is the character of the tensor-product representation $R \otimes R$? representation g: e (*AB*) (*BC*) (*AC*) (*ABC*) (*ACB*) rot/ref \otimes rot/ref $\chi_{R \otimes R}(g)$:

F. Multiplication by a group element can be viewed as a permutation on the six members of the group. Writing these permutations as 6×6 permutation matrices yields the regular representation *L*. What is its character? representation g: e(AB)(BC)(AC)(ABC)(ABC) (ACB) regular $\chi_L(g)$:

Q2: Using characters

One result was that for any group representation A and B, the dimension of the space in which it acts trivially

is given by $d(I,A) = \frac{1}{|G|} \sum_{g} \chi_A(g)$. For each of the above representations I, S, R, P, $S \oplus R$, $R \otimes R$, and L, compute $d(I,A) = \frac{1}{|G|} \sum_{g} \chi_A(g)$.