Linear Transformations and Group Representations
Homework \#4 (2020-2021), Questions
Q1: Using characters
Our main result was that for any two group representations A and B, the number of ways that an irreducible subspace of A could be matched up with an irreducible subspace of B is given by $d(A, B)=\frac{1}{|G|} \sum_{g} \overline{\chi_{A}(g)} \chi_{B}(g)$, and that $d(A, A)=1$-- which we here call the norm of A-- is equivalent to the statement that A is irreducible.
A. For each of the representations $I, S, R, P, S \oplus R, R \otimes R$, and L in Homework 3, compute their norm. For $R \otimes R$, what irreducible representations does it contain?

We shorten the work a bit by making use of the fact that characters are constant on the pair-swaps and on the three-cycles.

representation	$g:$	e	pair - swaps(3)	three - cycles(2)
trivial	$\chi_{I}(g):$	1	1	1
sign	$\chi_{S}(g):$	1	-1	1
rot/ref	$\chi_{R}(g):$	2	0	-1
permutation	$\chi_{P}(g):$	3	1	0
sign \oplus rot/ref	$\chi_{S \oplus R}(g):$	3	-1	0
rot/ref \otimes rot/ref	$\chi_{R \otimes R}(g):$	4	0	1
regular	$\chi_{L}(g):$	6	0	0

B. For $R \otimes R$, what irreducible representations does it contain?

Q2. Show that if a group is presented as a permutation of $m \geq 2$ objects, then the group representation consisting of the permutation matrices is not irreducible.

