Homework #4 (2020-2021), Questions

Q1: Using characters

Our main result was that for any two group representations A and B, the number of ways that an irreducible subspace of A could be matched up with an irreducible subspace of B is given by

$$d(A,B) = \frac{1}{|G|} \sum_{g} \overline{\chi_A(g)} \chi_B(g)$$
, and that $d(A,A) = 1$ -- which we here call the norm of A -- is equivalent to the

statement that A is irreducible.

A. For each of the representations I, S, R, P, $S \oplus R$, $R \otimes R$, and L in Homework 3, compute their norm. For $R \otimes R$, what irreducible representations does it contain?

We shorten the work a bit by making use of the fact that characters are constant on the pair-swaps and on the three-cycles.

representation	g:	е	pair - swaps(3)	three-cycles(2)
trivial	$\chi_I(g)$:	1	1	1
sign	$\chi_{s}(g)$:	1	-1	1
rot/ref	$\chi_{R}(g)$:	2	0	-1
permutation	$\chi_{_{P}}(g)$:	3	1	0
sign \oplus rot/ref	$\chi_{S\oplus R}(g)$:	3	-1	0
$rot/ref \otimes rot/ref$	$\chi_{_{R\otimes R}}(g)$:	4	0	1
regular	$\chi_L(g)$:	6	0	0

B. For $R \otimes R$, what irreducible representations does it contain?

Q2. Show that if a group is presented as a permutation of $m \ge 2$ objects, then the group representation consisting of the permutation matrices is not irreducible.