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Multivariate Methods 
 
Homework #1 (2020-2021), Answers 
 
Here we use Lagrange Multipliers to find maximum-entropy distributions. The common set-up for these 
problems is the following: 
 
P  is a discrete probability distribution on a set of N values { }jx :  That is, iP is the probability that a random 

draw chooses the value ix .  So 0iP   and 
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The entropy of a probability distribution ( )H P is defined as 
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Q1: Find the distribution P  that maximizes ( )H P  (subject to the constraint 
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is equivalent to log 1 0jP     .  So all jP are identical.  The constraint 
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requires that 1/jP N . 
 
Q2: Find the form of the distribution P  that maximizes ( )H P  subject to a constraint on variance, 
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 -- you won’t be able to solve for the values of the both Lagrange multipliers, but you can get close. 

 

We now have two constraints, 
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So ( , , ) 0V
j
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 means that 2log 1j V jP x    , i.e., that  2exp 1j V jP x     , which we can 

write more compactly as 
2

V jx
jP Ke  .  So the maximum-entropy distribution is a Gaussian, with the variance 

determined by V . 
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