Multivariate Methods

Homework #1 (2020-2021), Answers

Here we use Lagrange Multipliers to find maximum-entropy distributions. The common set-up for these problems is the following:

P is a discrete probability distribution on a set of *N* values $\{x_j\}$: That is, P_i is the probability that a random draw chooses the value x_i . So $P_i \ge 0$ and $\sum_{i=1}^{N} P_i = 1$.

The entropy of a probability distribution H(P) is defined as $H(P) = -\sum_{i=1}^{N} P_i \log P_i$.

Q1: Find the distribution *P* that maximizes H(P) (subject to the constraint $\sum_{i=1}^{N} P_i = 1$).

Our constraint is $\sum_{i=1}^{N} P_i = 1$. So we extremize $F(P, \lambda) = -\sum_{i=1}^{N} P_i \log P_i - \lambda \sum_{i=1}^{N} P_i$. $\frac{\partial}{\partial P_j} F(P, \lambda) = \frac{\partial}{\partial P_j} \left(-\sum_{i=1}^{N} P_i \log P_i - \lambda \sum_{i=1}^{N} P_i \right) = \frac{\partial}{\partial P_j} \left(-P_j \log P_j - \lambda P_j \right)$. $= -\log P_j - 1 - \lambda$ So $\frac{\partial}{\partial P_j} F(P, \lambda) = 0$ is equivalent to $-\log P_j - 1 - \lambda = 0$. So all P_j are identical. The constraint $\sum_{i=1}^{N} P_i = 1$ then requires that $P_i = 1/N$.

Q2: Find the form of the distribution *P* that maximizes H(P) subject to a constraint on variance, $\sum_{i=1}^{N} P_{i} x_{i}^{2} = V - you \text{ won't be able to solve for the values of the both Lagrange multipliers, but you can get close.}$

We now have two constraints, $\sum_{i=1}^{N} P_i = 1$ and $\sum_{i=1}^{N} P_i x_i^2 = V$. So we extremize $F(P, \lambda, \lambda_V) = -\sum_{i=1}^{N} P_i \log P_i - \lambda \sum_{i=1}^{N} P_i - \lambda_V \sum_{i=1}^{N} P_i x_i^2$. $\frac{\partial}{\partial P_j} F(P, \lambda, \lambda_V) = \frac{\partial}{\partial P_j} \left(-\sum_{i=1}^{N} P_i \log P_i - \lambda \sum_{i=1}^{N} P_i - \lambda_V \sum_{i=1}^{N} P_i x_i^2 \right) = \frac{\partial}{\partial P_j} \left(-P_j \log P_j - \lambda P_j - \lambda_V P_j x_j^2 \right)$ $= -\log P_j - 1 - \lambda - \lambda_V x_j^2$

So $\frac{\partial}{\partial P_j} F(P,\lambda,\lambda_v) = 0$ means that $\log P_j = -1 - \lambda - \lambda_v x_j^2$, i.e., that $P_j = \exp(-1 - \lambda - \lambda_v x_j^2)$, which we can

write more compactly as $P_j = Ke^{-\lambda_V x_j^2}$. So the maximum-entropy distribution is a Gaussian, with the variance determined by *V*.

Multivariate Methods 1 of 1