Homework \#2 (2020-2021), Answers
Here we work out a simple multidimensional scaling problem and see how negative eigenvalues can arise. Consider four points whose distances are the entries in the following matrix:

$$
D=\left(\begin{array}{llll}
0 & 1 & b & 1 \\
1 & 0 & 1 & b \\
b & 1 & 0 & 1 \\
1 & b & 1 & 0
\end{array}\right)
$$

A. Calculate the doubly-centered distance matrix G, with entries

$$
G_{i j}=\frac{1}{2}\left(-d_{i j}{ }^{2}+\frac{1}{N} \sum_{i=1}^{N} d_{i j}{ }^{2}+\frac{1}{N} \sum_{j=1}^{N} d_{i j}{ }^{2}-\frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} d_{i j}{ }^{2}\right) .
$$

Note that all points have the same set of distances to its neighbors: two points at a distance of 1, and one point at a distance of b. So $\frac{1}{N} \sum_{i=1}^{N} d_{i j}{ }^{2}=\frac{1}{N} \sum_{j=1}^{N} d_{i j}{ }^{2}=\frac{1}{4}\left(1+1+b^{2}\right)=\frac{2+b^{2}}{4}$, and $\frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} d_{i j}{ }^{2}=\frac{2+b^{2}}{4}$ also. So,

$$
G=-\frac{1}{2}\left(\begin{array}{cccc}
0 & 1 & b^{2} & 1 \\
1 & 0 & 1 & b^{2} \\
b^{2} & 1 & 0 & 1 \\
1 & b^{2} & 1 & 0
\end{array}\right)+\frac{1}{2}\left(\frac{2+b^{2}}{4}\right)\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)=\frac{1}{8}\left(\begin{array}{lll}
+2+b^{2} & -2+b^{2} & +2-3 b^{2}
\end{array}-2+b^{2}, ~\left(-2+b^{2} \begin{array}{ll}
+2+b^{2} & -2+b^{2} \\
-2-3 b^{2} \\
+2-3 b^{2} & -2+b^{2} \\
-2+b^{2} & +2-3 b^{2}
\end{array} \begin{array}{ll}
-2+b^{2} & +2+b^{2}
\end{array}\right)\right.
$$

B. We now find the eigenvectors of G. Observe that G, like D, is invariant under cyclic permutation of the
labels (1234). Therefore, it commutes with $P=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right)$, and consequently, has the same eigenvectors as P. What are the eigenvectors of P ?
Since P corresponds to the rotations of a square, its eigenvectors are the Fourier basis: $\vec{\varphi}_{1}=\left(\begin{array}{l}+1 \\ +1 \\ +1 \\ +1\end{array}\right), \vec{\varphi}_{-1}=\left(\begin{array}{l}+1 \\ -1 \\ +1 \\ -1\end{array}\right)$, $\vec{\varphi}_{i}=\left(\begin{array}{c}+1 \\ +i \\ -1 \\ -i\end{array}\right)$, and $\vec{\varphi}_{-i}=\left(\begin{array}{c}+1 \\ -i \\ -1 \\ +i\end{array}\right)$.
C. Determine the eigenvalues of G corresponding to each of the eigenvectors above.

By direct multiplication, $G \vec{\varphi}_{1}=0, G \vec{\varphi}_{-1}=\left(1-\frac{b^{2}}{2}\right) \vec{\varphi}_{-1}, G \vec{\varphi}_{i}=\frac{b^{2}}{2} \vec{\varphi}_{i}$, and $G \vec{\varphi}_{-i}=\frac{b^{2}}{2} \vec{\varphi}_{-i}$.
D. Find the embedding in 3-space that corresponds to the distance matrix in A.

The coordinates are given by $\vec{x}_{k}=\sqrt{\lambda_{k}} \vec{v}_{k}$, where \vec{v}_{i} are the normalized eigenvectors. $\vec{\varphi}_{1}$ can be ignored since its eigenvalue is zero. For $\vec{\varphi}_{-1}$, we take $\vec{v}_{-1}=\frac{1}{2} \vec{\varphi}_{-1}=\frac{1}{2}\left(\begin{array}{l}+1 \\ -1 \\ +1 \\ -1\end{array}\right)$. For the last two eigenvectors, we'd like to have real-valued coordinates. Since $\vec{\varphi}_{i}$, and $\vec{\varphi}_{-i}$ have the same eigenvalues, we replace them by $\vec{v}_{+}=\frac{\vec{\varphi}_{i}+\vec{\varphi}_{-i}}{2 \sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}+1 \\ 0 \\ -1 \\ 0\end{array}\right)$ and $\vec{v}_{-}=\frac{-i \vec{\varphi}_{i}+i \vec{\varphi}_{-i}}{2 \sqrt{2}}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}0 \\ +1 \\ 0 \\ -1\end{array}\right) \quad\left(\right.$ which have eigenvalue $\left.\lambda_{+}=\lambda_{-}=\frac{b^{2}}{2}\right)$.

So, assuming all eigenvalues are positive, the coordinates are $\left[\begin{array}{lll}\sqrt{\lambda_{-1}} \vec{v}_{-1} & \sqrt{\lambda_{+}} \vec{v}_{+} & \sqrt{\lambda_{-}} \vec{v}_{-}\end{array}\right]$, i.e., the four rows of $\left[\frac{1}{2} \sqrt{1-\frac{b^{2}}{2}}\left(\begin{array}{l}+1 \\ -1 \\ +1 \\ -1\end{array}\right) \quad \frac{b}{2}\left(\begin{array}{c}+1 \\ 0 \\ -1 \\ 0\end{array}\right) \quad \frac{b}{2}\left(\begin{array}{c}0 \\ +1 \\ 0 \\ -1\end{array}\right)\right]$.
E. What values of byield three equal eigenvalues?What does this indicate?
$\lambda_{+}=\lambda_{-}=\frac{b^{2}}{2}$, and $\lambda_{-1}=1-\frac{b^{2}}{2}$ becomes equal to the other eigenvalues at $b=1$. The points now lie at the vertices of a regular tetrahedron, and all three dimensions contribute equally. For $b<1$, the coordinate associated with \vec{v}_{-1} dominates. For $b>1$, the coordinates associated with \vec{v}_{+}and \vec{v}_{-}dominate.
$\lambda_{+}=\lambda_{-}=\frac{b^{2}}{2} \geq 0$ for all b, but $\lambda_{-1}=1-\frac{b^{2}}{2}$ becomes negative when $b>\sqrt{2}$. The distances can no longer be achieved by four points in a Euclidean space.
F. What values of byield negative eigenvalues?What does this indicate?
$\lambda_{+}=\lambda_{-}=\frac{b^{2}}{2} \geq 0$ for all b, but $\lambda_{-1}=1-\frac{b^{2}}{2}$ becomes negative when $b>\sqrt{2}$. The distances can no longer be achieved by four points in a Euclidean space.

