Multivariate Methods

Homework #2 (2020-2021), Answers

Here we work out a simple multidimensional scaling problem and see how negative eigenvalues can arise. Consider four points whose distances are the entries in the following matrix:

$$D = \begin{pmatrix} 0 & 1 & b & 1 \\ 1 & 0 & 1 & b \\ b & 1 & 0 & 1 \\ 1 & b & 1 & 0 \end{pmatrix}.$$

A. Calculate the doubly-centered distance matrix G, with entries

$$G_{ij} = \frac{1}{2} \left(-d_{ij}^{2} + \frac{1}{N} \sum_{i=1}^{N} d_{ij}^{2} + \frac{1}{N} \sum_{j=1}^{N} d_{ij}^{2} - \frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} d_{ij}^{2} \right).$$

B. We now find the eigenvectors of G. Observe that G, like D, is invariant under cyclic permutation of the labels (1234). Therefore, it commutes with $P = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$, and consequently, has the same eigenvectors as

P. What are the eigenvectors of P?

Since *P* corresponds to the rotations of a square, its eigenvectors are the Fourier basis: $\vec{\varphi}_1 = \begin{vmatrix} +1 \\ +1 \end{vmatrix}$, $\vec{\varphi}_{-1} = \begin{vmatrix} -1 \\ +1 \end{vmatrix}$,

$$\vec{\varphi}_i = \begin{pmatrix} +1\\+i\\-1\\-1\\-i \end{pmatrix}$$
, and $\vec{\varphi}_{-i} = \begin{pmatrix} +1\\-i\\-1\\+i \end{pmatrix}$.

C. Determine the eigenvalues of G corresponding to each of the eigenvectors above.

Multivariate Methods 1 of 2

By direct multiplication, $G\vec{\varphi}_1 = 0$, $G\vec{\varphi}_{-1} = (1 - \frac{b^2}{2})\vec{\varphi}_{-1}$, $G\vec{\varphi}_i = \frac{b^2}{2}\vec{\varphi}_i$, and $G\vec{\varphi}_{-i} = \frac{b^2}{2}\vec{\varphi}_{-i}$. D. Find the embedding in 3-space that corresponds to the distance matrix in A.

The coordinates are given by $\vec{x}_k = \sqrt{\lambda_k} \vec{v}_k$, where \vec{v}_i are the normalized eigenvectors. $\vec{\varphi}_1$ can be ignored since its eigenvalue is zero. For $\vec{\varphi}_{-1}$, we take $\vec{v}_{-1} = \frac{1}{2} \vec{\varphi}_{-1} = \frac{1}{2} \begin{pmatrix} +1 \\ -1 \\ +1 \\ -1 \end{pmatrix}$. For the last two eigenvectors, we'd like to have

real-valued coordinates. Since $\vec{\varphi}_i$, and $\vec{\varphi}_{-i}$ have the same eigenvalues, we replace them by (+1)

$$\vec{v}_{+} = \frac{\vec{\varphi}_{i} + \vec{\varphi}_{-i}}{2\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} +1\\0\\-1\\0 \end{pmatrix} \text{ and } \vec{v}_{-} = \frac{-i\vec{\varphi}_{i} + i\vec{\varphi}_{-i}}{2\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0\\+1\\0\\-1 \end{pmatrix} \text{ (which have eigenvalue } \lambda_{+} = \lambda_{-} = \frac{b^{2}}{2} \text{).}$$

So, assuming all eigenvalues are positive, the coordinates are $\begin{bmatrix} \sqrt{\lambda_{-1}} \vec{v}_{-1} & \sqrt{\lambda_{+}} \vec{v}_{+} & \sqrt{\lambda_{-}} \vec{v}_{-} \end{bmatrix}$, i.e., the four rows of $\begin{bmatrix} (+1) & (+1) & (-1) \end{bmatrix}$

	+1	[+1		0	
1 b^2	-1	$b \mid 0$	b	+1	
$\overline{2}\sqrt{1-2}$	+1	$\overline{2} -1$	$\overline{2}$	0	ŀ
	(-1)	0	J	(-1)	ļ

E. What values of b yield three equal eigenvalues? What does this indicate?

 $\lambda_{+} = \lambda_{-} = \frac{b^2}{2}$, and $\lambda_{-1} = 1 - \frac{b^2}{2}$ becomes equal to the other eigenvalues at b = 1. The points now lie at the vertices of a regular tetrahedron, and all three dimensions contribute equally. For b < 1, the coordinate associated with \vec{v}_{-1} dominates. For b > 1, the coordinates associated with \vec{v}_{+} and \vec{v}_{-} dominate.

 $\lambda_{+} = \lambda_{-} = \frac{b^2}{2} \ge 0$ for all *b*, but $\lambda_{-1} = 1 - \frac{b^2}{2}$ becomes negative when $b > \sqrt{2}$. The distances can no longer be achieved by four points in a Euclidean space.

F. What values of b yield negative eigenvalues? What does this indicate?

 $\lambda_{+} = \lambda_{-} = \frac{b^2}{2} \ge 0$ for all *b*, but $\lambda_{-1} = 1 - \frac{b^2}{2}$ becomes negative when $b > \sqrt{2}$. The distances can no longer be achieved by four points in a Euclidean space.