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Multivariate Methods 
 
Homework #2 (2020-2021), Answers 
 
Here we work out a simple multidimensional scaling problem and see how negative eigenvalues can arise. 
Consider four points whose distances are the entries in the following matrix: 
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A. Calculate the doubly-centered distance matrix G , with entries 
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Note that all points have the same set of distances to its neighbors:  two points at a distance of 1, and one point 

at a distance of b .  So 
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B. We now find the eigenvectors of G . Observe that G , like D , is invariant under cyclic permutation of the 

labels (1234) .  Therefore, it commutes with 
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            

, and consequently, has the same eigenvectors as 

P . What are the eigenvectors of P ? 

Since P  corresponds to the rotations of a square, its eigenvectors are the Fourier basis: 1
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C.  Determine the eigenvalues of G  corresponding to each of the eigenvectors above.  
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By direct multiplication,  1 0G 
 , 
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D. Find the embedding in 3-space that corresponds to the distance matrix in A.   
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So, assuming all eigenvalues are positive, the coordinates are 1 1v v v       
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. 

 
E. What values of b  yield three equal eigenvalues?What does this indicate? 
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    becomes equal to the other eigenvalues at 1b  .  The points now lie at the 

vertices of a regular tetrahedron, and all three dimensions contribute equally.  For 1b ,  the coordinate 
associated with 1v

  dominates. For 1b ,  the coordinates associated with v

  and v
  dominate. 
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      for all b , but 
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    becomes negative when 2b .  The distances can no longer be 

achieved by four points in a Euclidean space. 
 
F. What values of b  yield negative eigenvalues?What does this indicate? 
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    becomes negative when 2b .  The distances can no longer be 

achieved by four points in a Euclidean space. 
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