Homework \#2 (2020-2021), Questions
Here we work out a simple multidimensional scaling problem and see how negative eigenvalues can arise. Consider four points whose distances are the entries in the following matrix:
$D=\left(\begin{array}{llll}0 & 1 & b & 1 \\ 1 & 0 & 1 & b \\ b & 1 & 0 & 1 \\ 1 & b & 1 & 0\end{array}\right)$.
A. Calculate the doubly-centered distance matrix G, with entries $G_{i j}=\frac{1}{2}\left(-d_{i j}{ }^{2}+\frac{1}{N} \sum_{i=1}^{N} d_{i j}{ }^{2}+\frac{1}{N} \sum_{j=1}^{N} d_{i j}{ }^{2}-\frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} d_{i j}{ }^{2}\right)$.
B. We now find the eigenvectors of G. Observe that G, like D, is invariant under cyclic permutation of the labels (1234) . Therefore, it commutes with $P=\left(\begin{array}{llll}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0\end{array}\right)$, and consequently, has the same eigenvectors as P. What are the eigenvectors of P ?
C. Determine the eigenvalues of G corresponding to each of the eigenvectors above.
D. Find the embedding in 3-space that corresponds to the distance matrix in A.
E. What values of b yield three equal eigenvalues?What does this indicate?
F. What values of b yield negative eigenvalues?What does this indicate?

