Homework \#3 (2020-2021), Questions

Q1. Here we show that the entropy of a mixture is no less than the mixture of the entropies. Given two distributions P and Q, with entropies $H(P)=-\sum_{i} p_{i} \log p_{i}$ and $H(Q)=-\sum_{i} q_{i} \log q_{i}$, a mixture distribution $M_{\alpha}=\alpha P+(1-\alpha) Q$ is defined by the probabilities $m_{\alpha, i}=\alpha p_{i}+(1-\alpha) q_{i}$, for $0 \leq \alpha \leq 1$.
Show $H\left(M_{\alpha}\right) \geq \alpha H(P)+(1-\alpha) H(Q)$. Note that, since $H\left(M_{0}\right)=H(Q)$ and $H\left(M_{1}\right)=H(P)$, it suffices to show that $\frac{d^{2}}{d \alpha^{2}} H\left(M_{\alpha}\right) \leq 0$, as this means that $H\left(M_{\alpha}\right)$ (solid line) is concave downward, and therefore above the line (dashed) of mixtures of entropies.

Q2: Here we show that the entropy of a joint distribution is maximized when the variables are independently distributed. Let P be a discrete probability distribution on a set of M values $\left\{x_{i}\right\}$, i.e., P_{i} is the probability that a random draw chooses the value x_{i}. Similarly, let Q be a discrete probability distribution on a set of N values $\left\{y_{j}\right\}$, i.e., Q_{j} is the probability that a random draw chooses the value y_{j}. Let R be a discrete distribution on a set of $M \times N$ values $\left\{\left(x_{i}, y_{j}\right)\right\}$, i.e., $R_{i, j}$ is the probability that a random draw chooses the pair of values $\left(x_{i}, y_{j}\right)$. Find the joint distribution R that maximizes entropy, subject to the constraints that its marginals are compatible with P and Q, i.e., that $P_{i}=\sum_{j} R_{i, j}$ and that $Q_{j}=\sum_{i} R_{i, j}$. Lagrange multipliers will work nicely.

Q3: ICA: toy examples with cubic and quartic surrogates for entropy.

A. Consider the above distribution for bivariate data (centered at the origin), and its projection onto a line whose orientation with respect to the horizontal is given by θ. Determine the angular dependence of the second
moment M_{2}, the third moment M_{3}, and the fourth moment M_{4}. Which of these is sensitive to the structure in the data?
B. Same as A, but for this distribution.

