Homework #3 (2020-2021), Questions

Q1. Here we show that the entropy of a mixture is no less than the mixture of the entropies. Given two distributions *P* and *Q*, with entropies $H(P) = -\sum_{i} p_i \log p_i$ and $H(Q) = -\sum_{i} q_i \log q_i$, a mixture distribution $M_{\alpha} = \alpha P + (1-\alpha)Q$ is defined by the probabilities $m_{\alpha,i} = \alpha p_i + (1-\alpha)q_i$, for $0 \le \alpha \le 1$. Show $H(M_{\alpha}) \ge \alpha H(P) + (1-\alpha)H(Q)$. Note that, since $H(M_0) = H(Q)$ and $H(M_1) = H(P)$, it suffices to show that $\frac{d^2}{d\alpha^2}H(M_{\alpha}) \le 0$, as this means that $H(M_{\alpha})$ (solid line) is concave downward, and therefore above the line (dashed) of mixtures of entropies.

Q2: Here we show that the entropy of a joint distribution is maximized when the variables are independently distributed. Let *P* be a discrete probability distribution on a set of *M* values $\{x_i\}$, i.e., P_i is the probability that a random draw chooses the value x_i . Similarly, let *Q* be a discrete probability distribution on a set of *N* values $\{y_j\}$, i.e., Q_j is the probability that a random draw chooses the value y_j . Let *R* be a discrete distribution on a set of $M \times N$ values $\{(x_i, y_j)\}$, i.e., $R_{i,j}$ is the probability that a random draw chooses the pair of values (x_i, y_j) . Find the joint distribution *R* that maximizes entropy, subject to the constraints that its marginals are compatible with *P* and *Q*, i.e., that $P_i = \sum_j R_{i,j}$ and that $Q_j = \sum_i R_{i,j}$. Lagrange multipliers will work nicely.

Q3: ICA: toy examples with cubic and quartic surrogates for entropy.

A. Consider the above distribution for bivariate data (centered at the origin), and its projection onto a line whose orientation with respect to the horizontal is given by θ . Determine the angular dependence of the second

Multivariate Methods 1 of 2

moment M_2 , the third moment M_3 , and the fourth moment M_4 . Which of these is sensitive to the structure in the data?

B. Same as A, but for this distribution.

