Groups, Fields, and Vector Spaces

Homework \#1 (2022-2023), Answers
Q1: Permutations and parity: examples
Recall standard permutation notation: Every permutation can be broken down into disjoint cycles, by following around repeated application of the permutation to one element. The permutation that maps A to B, B to C, and C to A is written ($A B C$) (or, equivalently, $(B C A)$ or $(C A B)$). The permutation that maps Q to R and R to Q is written $(Q R)$ or $(R Q)$. The combination of the two is written, for example, $(A B C)(Q R)$.
A. What is the parity of a permutation that has a single cycle of n elements?

Using the convention that a product of permutations $Q P$ means "apply P then Q ", $\left(A_{1} A_{2} A_{3} \ldots A_{n}\right)=\left(A_{1} A_{2}\right)\left(A_{2} A_{3}\right) \ldots\left(A_{n-1} A_{n}\right)$. This has $n-1$ pair-swaps. So the parity of $\left(A_{1} A_{2} A_{3} \ldots A_{n}\right)$ is +1 (even) if n is odd, and -1 (odd) if n is even.
B. Consider a square with vertices labeled W, X, Y, and Z in clockwise order.

B1. Display the rotations of the square by $\pi / 2$ as permutations. What is the parity? ($W X Y Z$) and ($W Z Y X$), both with odd parity (from part A with $n=4$).

B2. Display the rotation of the square by π as a permutation. What is the parity? $(W Y)(X Z)$, even parity (two pair-swaps).

B3. Display the reflections that exchange one pair of opposite edges as permutations on the vertices. What is the parity?
$(W X)(Y Z)$ and $(W Z)(X Y)$, even parity (two pair swaps).
B4. Display the reflections that exchange one pair of opposite corners as permutations on the vertices. What is the parity?
($W Y$) and ($X Z$), odd parity (one pair swap).
C1-4. Now label the square's edges. Repeat the above, displaying the different kinds of group elements as permutations on the edges.

C1. Rotations of the square by $\pi / 2$:
$(P Q R S)$ and $(P S Q R)$, both with odd parity (from part A with $n=4$).

C2. Rotation of the square by π :
$(P R)(S Q)$, even parity (two pair-swaps).
C3. Exchange one pair of opposite edges:
$(S Q)$ and $(P R)$, odd parity (one pair swap).
C4. Exchange one pair of opposite corners:
$(P S)(Q R)$ and $(P Q)(S R)$, even parity (two pair swaps).

Q2: Permutations, parity, and homomorphisms: an application
Say G is a finite group and $g \in G$ has a permutation representation with odd parity. Show that there is no element h in G for which $g=h^{2}$.

Let φ denote the parity homomorphism between the permutation representation of G in which g has odd parity, and the group $\{1,-1\}$ (under multiplication). We are given that $\varphi(g)=-1$. If $g=h^{2}$, then $\varphi(g)=\varphi\left(h^{2}\right)=(\varphi(h))^{2}$; the second step is the homomorphism property. Since $\varphi(h)$ can only be 1 or $-1,(\varphi(h))^{2}=1$, which contradicts $. \varphi(g)=-1$.

