Groups, Fields, and Vector Spaces

Homework \#2 (2022-2023), Answers

Q1: The Group Algebra

Here we define a "group algebra" and see some of its basic properties.
A group algebra is the free vector space of functions on a group, along with an additional operation on the vectors that relies on the group operation. Specifically, let $S=\{e, \sigma, \tau, \ldots\}$ be a group, and f and g are functions from S to a field k. The vector space operations are defined as before: addition of vectors, $(f+g)(s)=f(s)+g(s)$, where the addition is in k, and αf; and scalar multiplication of vectors $(\alpha f)(s)=\alpha \cdot(f(s))$ where the multiplication on the right is in the field k.

To make this into an algebra, we define the new operation for composing vector space elements, here denoted *. We define this on the "one-hot" basis for the free vector space and then extend by linearity to the whole space. Say f_{σ} is an element of the one-hot basis, i.e., the function on the group for which $f_{\sigma}(\tau)=1$ for $\tau=\sigma$ and 0 for $\tau \neq \sigma$.
Then $f_{\sigma}^{*} g$ is the function on the group for which $\left(f_{\sigma} * g\right)(\tau)=g\left(\sigma^{-1} \tau\right) .(Q 2, Q 3$, and Q4 show why we chose this definition, rather than multiplying by σ on the right, or not using the inverse.)
A. Show, for any element g of the group algebra, and one-hot basis elements $f_{\sigma_{1}}$ and $f_{\sigma_{2}}$, that $f_{\sigma_{1}} *\left(f_{\sigma_{2}} * g\right)=f_{\sigma_{1} \sigma_{2}} * g$.
Evaluate at a typical element τ :
$\left(f_{\sigma_{1}} *\left(f_{\sigma_{2}} * g\right)\right)(\tau)=\left(f_{\sigma_{2}} * g\right)\left(\sigma_{1}^{-1} \tau\right)=g\left(\sigma_{2}^{-1}\left(\sigma_{1}^{-1} \tau\right)\right)=g\left(\left(\sigma_{2}^{-1} \sigma_{1}^{-1}\right) \tau\right)=g\left(\left(\sigma_{1} \sigma_{2}\right)^{-1} \tau\right)=\left(f_{\sigma_{1} \sigma_{2}} * g\right)(\tau)$
B. Show, for one-hot basis elements $f_{\sigma_{1}}$ and $f_{\sigma_{2}}$, that $f_{\sigma_{1}} * f_{\sigma_{2}}=f_{\sigma_{1} \sigma_{2}}$.

Work out the value of $h=f_{\sigma_{1}} * f_{\sigma_{2}}$ at a typical group element $\tau . h(\tau)=f_{\sigma_{2}}\left(\sigma_{1}^{-1} \tau\right)$: This is zero unless $\sigma_{1}^{-1} \tau=\sigma_{2}$, and 1 when equality holds. But $\sigma_{1}^{-1} \tau=\sigma_{2}$ is equivalent to $\tau=\sigma_{1} \sigma_{2}$, so $f_{\sigma_{1}} * f_{\sigma_{2}}=f_{\sigma_{1} \sigma_{2}}$.
C. Show that * is associative.

Combining A and B shows that $f_{\sigma_{1}} *\left(f_{\sigma_{2}} * g\right)=f_{\sigma_{1} \sigma_{2}} * g=\left(f_{\sigma_{1}} * f_{\sigma_{2}}\right) * g$. Since any member of the group algebra can be written as $h=\sum_{\sigma \in S} h(\sigma) f_{\sigma}$, this extends, via linearity, to the group algebra.
D. $\quad I s *$ commutative?

No, if the underlying group is not commutative - since $f_{\sigma_{1}}{ }^{*} f_{\sigma_{2}}=f_{\sigma_{1} \sigma_{2}}$ but $f_{\sigma_{2}}{ }^{*} f_{\sigma_{1}}=f_{\sigma_{2} \sigma_{1}}$.
E. What is the identity element for addition in the group algebra? Does every element of the group algebra have an inverse for addition?

The identity under group-algebra addition is the function z that assigns zero to every group element, i.e., $z(\sigma)=0$ for all σ. Using the definition of addition in the group algebra: $(f+z)(\sigma)=f(\sigma)+z(\sigma)=f(\sigma)+0=f(\sigma)$.

The inverse of f under addition is the function f_{-}defined by $f_{-}(\sigma)=-f(\sigma)$. To see that it is the additive inverse: $\left(f+f_{-}\right)(\sigma)=f(\sigma)+f_{-}(\sigma)=f(\sigma)+(-f(\sigma))=0$.
F. What is the identity element in the group algebra for *? Does every element of the group algebra have an inverse for *?

The identity for * is the one-hot basis element f_{e}, since $\left(f_{e}{ }^{*} g\right)(\tau)=g\left(e^{-1} \tau\right)=g(\tau)$.
However, not every element has an inverse. An example of a member of the algebra that does not have an inverse is the constant function, $c(\sigma)=1$, which can also be written as $c=\sum_{\sigma \in S} f_{\sigma}$, i.e., a sum over all of the one-hots. To see that $c^{*} g$ cannot be f_{e} :
$c^{*} g=\left(\sum_{\sigma \in S} f_{\sigma}\right) * g=\sum_{\sigma \in S}\left(f_{\sigma} * g\right)$, because $*$ is linear. Then from the definition of *: $\left(c^{*} g\right)(\tau)=\sum_{\sigma \in S}\left(f_{\sigma} * g\right)(\tau)=\sum_{\sigma \in S} g\left(\sigma^{-1} \tau\right)$. Now, note that as σ ranges over the group, then so does $\sigma^{-1} \tau$. So in final sum, the arguments of g sample each element of the group once, for any choice of τ. So $c^{*} g$ is constant on the group. Since $f_{e}(e)=1$ but 0 elsewhere, $c^{*} g$ cannot be f_{e}.
G. Let $g=\sum_{\sigma \in S} g(\sigma) f_{\sigma}$ and $h=\sum_{\sigma \in S} h(\sigma) f_{\sigma}$. Write $g^{*} h$ as an explicit sum of onehot basis elements.
With $g=\sum_{\sigma \in S} g(\sigma) f_{\sigma}$ and $h=\sum_{\sigma^{\prime} \in S} h\left(\sigma^{\prime}\right) f_{\sigma^{\prime}}$, linearity of * means that
$g * h=\left(\sum_{\sigma \in S} g(\sigma) f_{\sigma}\right) *\left(\sum_{\sigma^{\prime} \in S} h\left(\sigma^{\prime}\right) f_{\sigma^{\prime}}\right)=\sum_{\sigma \in S} \sum_{\sigma^{\prime} \in S} g(\sigma) h\left(\sigma^{\prime}\right)\left(f_{\sigma} * f_{\sigma^{\prime}}\right)$.
Applying part B :
$g^{*} h=\sum_{\sigma \in S} \sum_{\sigma^{\prime} \in S} g(\sigma) h\left(\sigma^{\prime}\right) f_{\sigma \sigma^{\prime}}$.
As σ and σ^{\prime} range independently over the group, their product $\sigma \sigma^{\prime}$ duplicates many values. So we collect terms for which $\sigma \sigma^{\prime}=\tau$. This means that $\sigma^{\prime}=\sigma^{-1} \tau$. So
$g^{*} h=\sum_{\tau \in S}\left(\sum_{\sigma \in S} g(\sigma) h\left(\sigma^{-1} \tau\right)\right) f_{\tau}$. That is, $\left(g^{*} h\right)(\tau)=\sum_{\sigma \in S} g(\sigma) h\left(\sigma^{-1} \tau\right)$.
Other than a normalizing factor, this says that * is a convolution.
Q2, Q3, and Q4 justify the specific way that * is defined. Alternative choices make either Q1A or Q1B (or both) less pretty.

Q2. Alternative construction I.
Say $f_{\sigma} \circ g$ is the function on the group for which $\left(f_{\sigma} \circ g\right)(\tau)=g(\sigma \tau)$.
A. Show that Q1A above becomes $f_{\sigma_{1}} \circ\left(f_{\sigma_{2}} \circ g\right)=f_{\sigma_{2} \sigma_{1}} \circ g$.

Evaluate at a typical element τ :
$\left(f_{\sigma_{1}} \circ\left(f_{\sigma_{2}} \circ g\right)\right)(\tau)=\left(f_{\sigma_{2}} \circ g\right)\left(\sigma_{1} \tau\right)=g\left(\sigma_{2}\left(\sigma_{1} \tau\right)\right)=g\left(\left(\sigma_{2} \sigma_{1}\right) \tau\right)=\left(f_{\sigma_{2} \sigma_{1}} \circ g\right)(\tau)$
B. Show that Q1B becomes $f_{\sigma_{1}} \circ f_{\sigma_{2}}=f_{\sigma_{1}^{-1} \sigma_{2}}$.

Evaluate $h=f_{\sigma_{1}} \circ f_{\sigma_{2}}$ at a typical group element $\tau . h(\tau)=f_{\sigma_{2}}\left(\sigma_{1} \tau\right)$: it is zero unless $\sigma_{1} \tau=\sigma_{2}$, and 1 when equality holds. But $\sigma_{1} \tau=\sigma_{2}$ is equivalent to $\tau=\sigma_{1}^{-1} \sigma_{2}$, so $f_{\sigma_{1}} \circ f_{\sigma_{2}}=f_{\sigma_{1}^{-1} \sigma_{2}}$

Q3. Alternative construction II.
Say $f_{\sigma} \circ g$ is the function on the group for which $\left(f_{\sigma} \circ g\right)(\tau)=g\left(\tau \sigma^{-1}\right)$
A. Show that Q1A above becomes $f_{\sigma_{1}} \circ\left(f_{\sigma_{2}} \circ g\right)=f_{\sigma_{2} \sigma_{1}} \circ g$.

Evaluate at a typical element τ :
$\left(f_{\sigma_{1}} \circ\left(f_{\sigma_{2}} \circ g\right)\right)(\tau)=\left(f_{\sigma_{2}} \circ g\right)\left(\tau \sigma_{1}^{-1}\right)=g\left(\left(\tau \sigma_{1}^{-1}\right) \sigma_{2}^{-1}\right)=g\left(\tau\left(\sigma_{1}^{-1} \sigma_{2}^{-1}\right)\right)=g\left(\tau\left(\sigma_{2} \sigma_{1}\right)^{-1}\right)=\left(f_{\sigma_{2} \sigma_{1}} \circ g\right)(\tau)$
B. Show that $Q 1 B$ becomes $f_{\sigma_{1}} \circ f_{\sigma_{2}}=f_{\sigma_{2} \sigma_{1}}$.

Evaluate $h=f_{\sigma_{1}} \circ f_{\sigma_{2}}$ at a typical group element $\tau . h(\tau)=f_{\sigma_{2}}\left(\tau \sigma_{1}^{-1}\right)$: it is zero unless $\tau \sigma_{1}^{-1}=\sigma_{2}$, and 1 when equality holds. But $\tau \sigma_{1}^{-1}=\sigma_{2}$ is equivalent to $\tau=\sigma_{2} \sigma_{1}$, so $f_{\sigma_{1}} \circ f_{\sigma_{2}}=f_{\sigma_{2} \sigma_{1}}$.

Q4. Alternative construction III.
Say $f_{\sigma} \circ g$ is the function on the group for which $\left(f_{\sigma} \circ g\right)(\tau)=g(\tau \sigma)$
A. Show that Q1A above becomes $f_{\sigma_{1}} \circ\left(f_{\sigma_{2}} \circ g\right)=f_{\sigma_{1} \sigma_{2}} \circ g$ (i.e., is unchanged).

Evaluate at a typical element τ :
$\left(f_{\sigma_{1}} \circ\left(f_{\sigma_{2}} \circ g\right)\right)(\tau)=\left(f_{\sigma_{2}} \circ g\right)\left(\tau \sigma_{1}\right)=g\left(\left(\tau \sigma_{1}\right) \sigma_{2}\right)=g\left(\tau\left(\sigma_{1} \sigma_{2}\right)\right)=\left(f_{\sigma_{1} \sigma_{2}} \circ g\right)(\tau)$
B. Show that Q1B becomes $f_{\sigma_{1}} \circ f_{\sigma_{2}}=f_{\sigma_{2} \sigma_{1}^{-1}}$.

Evaluate $h=f_{\sigma_{1}} \circ f_{\sigma_{2}}$ at a typical group element $\tau . h(\tau)=f_{\sigma_{2}}\left(\tau \sigma_{1}\right)$: it is zero unless $\tau \sigma_{1}=\sigma_{2}$, and 1 when equality holds. But $\tau \sigma_{1}=\sigma_{2}$ is equivalent to $\tau=\sigma_{2} \sigma_{1}^{-1}$, so $f_{\sigma_{1}} \circ f_{\sigma_{2}}=f_{\sigma_{2} \sigma_{1}^{-1}}$.

