Groups, Fields, and Vector Spaces

Homework #2 (2022-2023), Answers

Q1: The Group Algebra

Here we define a "group algebra" and see some of its basic properties.

A group algebra is the free vector space of functions on a group, along with an additional operation on the vectors that relies on the group operation. Specifically, let $S = \{e, \sigma, \tau, ...\}$ be a group, and f and g are functions from S to a field k. The vector space operations are defined as before: addition of vectors, (f + g)(s) = f(s) + g(s), where the addition is in k, and αf ; and scalar multiplication of vectors $(\alpha f)(s) = \alpha \cdot (f(s))$ where the multiplication on the right is in the field k.

To make this into an algebra, we define the new operation for composing vector space elements, here denoted *. We define this on the "one-hot" basis for the free vector space and then extend by linearity to the whole space. Say f_{σ} is an element of the one-hot basis, i.e., the function on the group for which $f_{\sigma}(\tau) = 1$ for $\tau = \sigma$ and 0 for $\tau \neq \sigma$. Then $f_{\sigma} * g$ is the function on the group for which $(f_{\sigma} * g)(\tau) = g(\sigma^{-1}\tau)$. (Q2, Q3, and Q4 show why we chose this definition, rather than multiplying by σ on the right, or not using the inverse.)

A. Show, for any element g of the group algebra, and one-hot basis elements f_{σ_1} and f_{σ_2} , that $f_{\sigma_1} * (f_{\sigma_2} * g) = f_{\sigma_1 \sigma_2} * g$. Evaluate at a typical element τ : $(f_{\sigma_1} * (f_{\sigma_2} * g))(\tau) = (f_{\sigma_2} * g)(\sigma_1^{-1}\tau) = g(\sigma_2^{-1}(\sigma_1^{-1}\tau)) = g((\sigma_2^{-1}\sigma_1^{-1})\tau) = g((\sigma_1 \sigma_2)^{-1}\tau) = (f_{\sigma_1 \sigma_2} * g)(\tau)$

B. Show, for one-hot basis elements f_{σ_1} and f_{σ_2} , that $f_{\sigma_1} * f_{\sigma_2} = f_{\sigma_1 \sigma_2}$.

Work out the value of $h = f_{\sigma_1} * f_{\sigma_2}$ at a typical group element $\tau \cdot h(\tau) = f_{\sigma_2}(\sigma_1^{-1}\tau)$: This is zero unless $\sigma_1^{-1}\tau = \sigma_2$, and 1 when equality holds. But $\sigma_1^{-1}\tau = \sigma_2$ is equivalent to $\tau = \sigma_1 \sigma_2$, so $f_{\sigma_1} * f_{\sigma_2} = f_{\sigma_1 \sigma_2}$.

C. Show that * *is associative.*

Combining A and B shows that $f_{\sigma_1} * (f_{\sigma_2} * g) = f_{\sigma_1 \sigma_2} * g = (f_{\sigma_1} * f_{\sigma_2}) * g$. Since any member of the group algebra can be written as $h = \sum_{\sigma \in S} h(\sigma) f_{\sigma}$, this extends, via linearity, to the group algebra.

D. Is * commutative?

No, if the underlying group is not commutative – since $f_{\sigma_1} * f_{\sigma_2} = f_{\sigma_1 \sigma_2}$ but

 $f_{\sigma_2} * f_{\sigma_1} = f_{\sigma_2 \sigma_1}.$

E. What is the identity element for addition in the group algebra? Does every element of the group algebra have an inverse for addition?

The identity under group-algebra addition is the function z that assigns zero to every group element, i.e., $z(\sigma) = 0$ for all σ . Using the definition of addition in the group algebra: $(f + z)(\sigma) = f(\sigma) + z(\sigma) = f(\sigma) + 0 = f(\sigma)$.

The inverse of f under addition is the function f_- defined by $f_-(\sigma) = -f(\sigma)$. To see that it is the additive inverse: $(f + f_-)(\sigma) = f(\sigma) + f_-(\sigma) = f(\sigma) + (-f(\sigma)) = 0$.

F. What is the identity element in the group algebra for *? Does every element of the group algebra have an inverse for *?

The identity for * is the one-hot basis element f_e , since $(f_e * g)(\tau) = g(e^{-1}\tau) = g(\tau)$. However, not every element has an inverse. An example of a member of the algebra that does not have an inverse is the constant function, $c(\sigma) = 1$, which can also be written as $c = \sum_{\sigma \in S} f_{\sigma}$, i.e., a sum over all of the one-hots. To see that c * g cannot be f_e :

$$c * g = \left(\sum_{\sigma \in S} f_{\sigma}\right) * g = \sum_{\sigma \in S} (f_{\sigma} * g)$$
, because * is linear. Then from the definition of *:
 $(c * g)(\tau) = \sum_{\sigma \in S} (f_{\sigma} * g)(\tau) = \sum_{\sigma \in S} g(\sigma^{-1}\tau)$. Now, note that as σ ranges over the group,
then so does $\sigma^{-1}\tau$. So in final sum, the arguments of g sample each element of the
group once, for any choice of τ . So $c * g$ is constant on the group. Since, $f(e) = 1$ but

group once, for any choice of τ . So c^*g is constant on the group. Since $f_e(e) = 1$ but 0 elsewhere, c^*g cannot be f_e .

G. Let
$$g = \sum_{\sigma \in S} g(\sigma) f_{\sigma}$$
 and $h = \sum_{\sigma \in S} h(\sigma) f_{\sigma}$. Write $g * h$ as an explicit sum of one-

hot basis elements.

With
$$g = \sum_{\sigma \in S} g(\sigma) f_{\sigma}$$
 and $h = \sum_{\sigma' \in S} h(\sigma') f_{\sigma'}$, linearity of * means that
 $g * h = \left(\sum_{\sigma \in S} g(\sigma) f_{\sigma}\right) * \left(\sum_{\sigma' \in S} h(\sigma') f_{\sigma'}\right) = \sum_{\sigma \in S} \sum_{\sigma' \in S} g(\sigma) h(\sigma') (f_{\sigma} * f_{\sigma'}).$

Applying part B: $g * h = \sum_{\sigma \in S} \sum_{\sigma' \in S} g(\sigma) h(\sigma') f_{\sigma \sigma'}.$

As σ and σ' range independently over the group, their product $\sigma\sigma'$ duplicates many values. So we collect terms for which $\sigma\sigma' = \tau$. This means that $\sigma' = \sigma^{-1}\tau$. So

$$g^*h = \sum_{\tau \in S} \left(\sum_{\sigma \in S} g(\sigma) h(\sigma^{-1}\tau) \right) f_{\tau}$$
. That is, $(g^*h)(\tau) = \sum_{\sigma \in S} g(\sigma) h(\sigma^{-1}\tau)$.

Other than a normalizing factor, this says that * is a convolution.

Q2, Q3, and Q4 justify the specific way that * is defined. Alternative choices make either Q1A or Q1B (or both) less pretty.

Q2. Alternative construction I. Say $f_{\sigma} \circ g$ is the function on the group for which $(f_{\sigma} \circ g)(\tau) = g(\sigma \tau)$.

A. Show that Q1A above becomes $f_{\sigma_1} \circ (f_{\sigma_2} \circ g) = f_{\sigma_2 \sigma_1} \circ g$.

Evaluate at a typical element τ :

$$\left(f_{\sigma_1}\circ\left(f_{\sigma_2}\circ g\right)\right)(\tau)=\left(f_{\sigma_2}\circ g\right)(\sigma_1\tau)=g\left(\sigma_2(\sigma_1\tau)\right)=g\left((\sigma_2\sigma_1)\tau\right)=\left(f_{\sigma_2\sigma_1}\circ g\right)(\tau)$$

B. Show that Q1B becomes $f_{\sigma_1} \circ f_{\sigma_2} = f_{\sigma_1^{-1}\sigma_2}$.

Evaluate $h = f_{\sigma_1} \circ f_{\sigma_2}$ at a typical group element $\tau \cdot h(\tau) = f_{\sigma_2}(\sigma_1 \tau)$: it is zero unless $\sigma_1 \tau = \sigma_2$, and 1 when equality holds. But $\sigma_1 \tau = \sigma_2$ is equivalent to $\tau = \sigma_1^{-1} \sigma_2$, so $f_{\sigma_1} \circ f_{\sigma_2} = f_{\sigma_1^{-1} \sigma_2}$

Q3. Alternative construction II.

Say $f_{\sigma} \circ g$ is the function on the group for which $(f_{\sigma} \circ g)(\tau) = g(\tau \sigma^{-1})$ A. Show that Q1A above becomes $f_{\sigma_1} \circ (f_{\sigma_2} \circ g) = f_{\sigma_2 \sigma_1} \circ g$. Evaluate at a typical element τ : $(f_{\sigma_1} \circ (f_{\sigma_2} \circ g))(\tau) = (f_{\sigma_2} \circ g)(\tau \sigma_1^{-1}) = g((\tau \sigma_1^{-1})\sigma_2^{-1}) = g(\tau (\sigma_1^{-1}\sigma_2^{-1})) = g(\tau (\sigma_2 \sigma_1)^{-1}) = (f_{\sigma_2 \sigma_1} \circ g)(\tau)$

B. Show that Q1B becomes $f_{\sigma_1} \circ f_{\sigma_2} = f_{\sigma_2 \sigma_1}$.

Evaluate $h = f_{\sigma_1} \circ f_{\sigma_2}$ at a typical group element $\tau \cdot h(\tau) = f_{\sigma_2}(\tau \sigma_1^{-1})$: it is zero unless $\tau \sigma_1^{-1} = \sigma_2$, and 1 when equality holds. But $\tau \sigma_1^{-1} = \sigma_2$ is equivalent to $\tau = \sigma_2 \sigma_1$, so $f_{\sigma_1} \circ f_{\sigma_2} = f_{\sigma_2 \sigma_1}$.

Q4. Alternative construction III.

Say $f_{\sigma} \circ g$ is the function on the group for which $(f_{\sigma} \circ g)(\tau) = g(\tau \sigma)$ A. Show that Q1A above becomes $f_{\sigma_1} \circ (f_{\sigma_2} \circ g) = f_{\sigma_1 \sigma_2} \circ g$ (i.e., is unchanged). Evaluate at a typical element τ : $(f_{\sigma_1} \circ (f_{\sigma_2} \circ g))(\tau) = (f_{\sigma_2} \circ g)(\tau \sigma_1) = g((\tau \sigma_1) \sigma_2) = g(\tau(\sigma_1 \sigma_2)) = (f_{\sigma_1 \sigma_2} \circ g)(\tau)$ B. Show that Q1B becomes $f_{\sigma_1} \circ f_{\sigma_2} = f_{\sigma,\sigma_1^{-1}}$. Evaluate $h = f_{\sigma_1} \circ f_{\sigma_2}$ at a typical group element $\tau \cdot h(\tau) = f_{\sigma_2}(\tau \sigma_1)$: it is zero unless $\tau \sigma_1 = \sigma_2$, and 1 when equality holds. But $\tau \sigma_1 = \sigma_2$ is equivalent to $\tau = \sigma_2 \sigma_1^{-1}$, so $f_{\sigma_1} \circ f_{\sigma_2} = f_{\sigma_2 \sigma_1^{-1}}$.