Groups, Fields, and Vector Spaces
Homework \#3 (2022-2023), Questions

Q1. The mapping from linear transformations in V to linear transformations in $V^{\otimes n}$, $\operatorname{sym}\left(V^{\otimes n}\right)$, and $\operatorname{anti}\left(V^{\otimes n}\right)$ preserves composition of operators. But does it preserve addition of operators?

Consider two linear transformations A and B in $\operatorname{Hom}(V, V)$ and two vectors $v, w \in V$, and the elementary tensor product $v \otimes w$.
A. Write $(A+B)(v \otimes w)$ in terms of elementary tensor products.
B. Write $(A+B)(v \otimes w-v \otimes w)$ in terms of antisymmetrized elementary tensor products, i.e., in terms of elements of $\operatorname{anti}\left(V^{\otimes 2}\right)$.
C. Is $A(v \otimes w)+B(v \otimes w)$ the same as the quantity in Q 1 A ?
D. Is there a simple relationship between Q 1 A and Q 1 C if $A=B$?

