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Linear Systems: Black Boxes and Beyond 
 
Homework #1 (2022-2023), Answers 
 
Transfer functions and complex-analytic properties. 
Q1. A simple transfer function.   
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Q2. Fourier inversion via contour integration.  
For the transfer function ˆ ( )f   of Question 1, recover the Fourier transform 
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   via contour integration.  Use a closed contour that runs along the real 

axis from, say, M  to M  and then returns to its start via an excursion into either the upper- or 
lower- half plane. 
 

 
 



Linear Systems: Black Boxes and Beyond, 2 of 4 

First, take 0  and consider the integral ˆ ( )i t

C

I e f d    over the contour in the upper half 

plane, illustrated below.  We first show that the integrals on the segments 2I , 3I , and 4I  
approach zero as M   and R  .  This implies that, in this limit. the contour integral is 
equal to 1I , which is 2 ( )f t . 
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t  and  , approaches zero as M  . 4I  is handled the same way, replacing M  by M . 
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.  The final integrand is 

bounded away from zero, so, for fixed M , t  and  , 3I  can be made as small as desired by 
increasing R . 
 
Evaluation of the contour integral: By Cauchy’s Theorem, the contour integral is equal to the 
2 i  times sum of the residues at all the enclosed singularities.  The only singularity of 
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the contour can be made arbitrarily small as M   and R  , then 1I I  in this limit.  

And in this limit, 1 2 ( )I f t , so /1( ) tf t e 


 . 

 
Note that, the critical part of the argument is that Rte  can be made small by increasing R .  This 
argument holds for 0t   since we took the contour’s return path ( 3I ) to be in the upper half 
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plane.  For 0t  , the magnitude along  3I  can only be controlled if it is in the lower half-plane 

(the dashed contour in the illustration). And in the lower half-plane,  1ˆ ( )
1

f
i







 has no 

singularities.  So Cauchy’s Theorem says that the contour integral, and hence, ( )f t , is zero when 
0t  . 

 
Looking back at the above argument, we see that we didn’t need to be able to integrate ˆ ( )f  ; we 
just needed to know that its integral was bounded.  So there’s an important bottom line: when 
there are no singularities of ˆ ( )f   in the lower half-plane and ˆ ( )f   behaves “nicely” for large 

 , then the corresponding Fourier inverse 1 ˆ( ) ( )
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response of a causal system.  The converse is also true:  if there are singularities of ˆ ( )f   in the 
lower half plane, then ˆ ( )f   cannot be the transfer function of a causal system. 
 
Q3.  When can a linear filter be realized as a continuum concatenation of another linear filter?  
Consider a linear filter L  of a causal system, with transfer function ˆ( )L  .   
A. If there is a linear filter 2B , for which a series combination of 2B  with itself yields L , then 

what is 2
ˆ ( )B  ?  If there is a linear filter nB , for which an series combination of n  copies yields 

L , then what is ˆ ( )nB  ?   
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B. In the above scenario, as n  grows, it seems reasonable to hypothesize that nB  becomes closer 
and closer to the identity – since the net result of n  successive applications of nB  must remain 

fixed.  What is ˆ ˆ( ) lim ( ( ) 1)n nG n B   ? If this limit exists, then G  can be regarded as the 

infinitesimal transformation that generates L , since  1 ˆˆ ( ) ( )nB I G
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C. There is a converse of Q2:  if there are singularities of ˆ ( )f   in the lower half plane, then 
ˆ ( )f   cannot be the transfer function of a causal system.  So, given that L  is a causal system 

(and therefore, that ˆ( )L   has no singularities in the lower half plane), does it follow that every 
causal system has a causal infinitesimal? If not, what is an example? 
 
No. Since ˆ ˆ( ) log ( )G L  , we need to check if the absence of singularities for ˆ( )L   in the 
lower half plane guarantees that there are no singularities for ˆlog ( )L  .  The logarithm has a 
singularity when its argument is either infinity or zero.  So if ˆ( )L   has a zero in the lower half 
plane – which is not a singularity -- then ˆ ˆ( ) log ( )G L   has a singularity.  
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, which is related to the transfer function in Q1 by 
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 , so, although ˆ( )h   does not have a singularity in the lower half 

plane, ˆlog ( )h   does.  
 
Comment: Transfer functions that have causal infinitesimals – equivalently, that do not have 
zeros in the lower half plane – are called “minimum phase” transfer functions. 
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 is the archetype of a transfer function that is not minimum-phase.  Note that 

ˆ( ) 1h    -- so that concatenation with this filter adds a phase shift, but without changing 

amplitudes.  
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