Linear Systems: Black Boxes and Beyond

Homework #1 (2022-2023), Answers

Transfer functions and complex-analytic properties. Q1. A simple transfer function.

For the impulse response $f(t) = \begin{cases} \frac{1}{\tau} e^{-t/\tau}, t \ge 0\\ 0, t < 0 \end{cases}$ -- which is the impulse response of a single-stage "RC" filter with time constant --, compute the transfer function, $\hat{f}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega t} f(t) dt$.

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega t} f(t) dt = \frac{1}{\tau} \int_{0}^{\infty} e^{-i\omega t} e^{-t/\tau} dt = \frac{1}{\tau} \int_{0}^{\infty} e^{-(i\omega + 1/\tau)t} dt$$
$$= \frac{1}{\tau} \frac{1}{i\omega + \frac{1}{\tau}} \left(e^{-(i\omega + 1/\tau)t} \right) \Big|_{0}^{\infty} = \frac{1}{\tau} \frac{1}{i\omega + \frac{1}{\tau}} = \frac{1}{1 + i\omega\tau}$$

Q2. Fourier inversion via contour integration.

For the transfer function $\hat{f}(\omega)$ of Question 1, recover the Fourier transform

 $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} \hat{f}(\omega) d\omega$ via contour integration. Use a closed contour that runs along the real

axis from, say, -M to M and then returns to its start via an excursion into either the upper- or lower- half plane.

First, take $\tau > 0$ and consider the integral $I = \int_{C} e^{i\omega t} \hat{f}(\omega) d\omega$ over the contour in the upper half plane, illustrated below. We first show that the integrals on the segments I_2 , I_3 , and I_4 approach zero as $M \to \infty$ and $R \to \infty$. This implies that, in this limit, the contour integral is equal to I_1 , which is $2\pi f(t)$.

To show that
$$I_2 \to 0$$
: $I_2 = \int_0^R e^{i(M+iy)t} \hat{f}(M+iy) dy$, so
 $|I_2| \le \int_0^R |e^{i(M+iy)t}| \left| \frac{1}{1+i(M+iy)\tau} \right| dy = |e^{iMt}| \int_0^R |e^{i(iy)t}| \left| \frac{1}{1+i(M+iy)\tau} \right| dy =$
 $\int_0^R e^{-yt} \left| \frac{1}{1+iM\tau-\tau^2} \right| dy = \left| \frac{1}{1+iM\tau-\tau^2} \right| \frac{1-e^{-Rt}}{t} = \frac{1-e^{-Rt}}{t} \frac{1}{\sqrt{(1-\tau^2)^2+M^2\tau^2}}$, which, for fixed

t and τ , approaches zero as $M \to \infty$. I_4 is handled the same way, replacing M by -M.

To show that
$$I_3 \to 0$$
: $I_3 = \int_{M}^{-M} e^{i(x+iR)t} \hat{f}(x+iR) dx$, so
 $|I_3| \le \int_{M}^{-M} |e^{i(x+iR)t}| \left| \frac{1}{1+i(x+iR)\tau} \right| dx = e^{-Rt} \int_{M}^{-M} |e^{ixt}| \left| \frac{1}{1+i(x+iR)\tau} \right| dx$. The final integrand is
 $= e^{-Rt} \int_{M}^{-M} \left| \frac{1}{1+i(x+iR)\tau} \right| dx = e^{-Rt} \int_{M}^{-M} \left| \frac{1}{1-R\tau+ix\tau} \right| dx$

bounded away from zero, so, for fixed M, t and τ , I_3 can be made as small as desired by increasing R.

Evaluation of the contour integral: By Cauchy's Theorem, the contour integral is equal to the $2\pi i$ times sum of the residues at all the enclosed singularities. The only singularity of $\frac{1}{1+i\omega\tau}e^{i\omega\tau}$ is at $\omega = i/\tau$, and the residue is at that point is the limiting value of the integrand $\frac{1}{1+i\omega\tau}e^{i\omega\tau}$ multiplied by $\omega - i/\tau$, at $\omega = i/\tau$. But $\frac{1}{1+i\omega\tau}e^{i\omega\tau} = \frac{1}{i\tau}\frac{e^{i\omega\tau}}{\omega - i/\tau}$, so the residue is $\frac{1}{i\tau}e^{i(i\tau)\tau} = \frac{1}{i\tau}e^{-t/\tau}$. So $I = 2\pi i \left(\frac{1}{i\tau}e^{-t/\tau}\right) = \frac{2\pi}{\tau}e^{-t/\tau}$. Since we showed that the other segments of the contour can be made arbitrarily small as $M \to \infty$ and $R \to \infty$, then $I_1 \to I$ in this limit. And in this limit, $I_1 = 2\pi f(t)$, so $f(t) = \frac{1}{\tau}e^{-t/\tau}$.

Note that, the critical part of the argument is that e^{-Rt} can be made small by increasing R. This argument holds for t > 0 since we took the contour's return path (I_3) to be in the upper half

plane. For t < 0, the magnitude along I_3 can only be controlled if it is in the lower half-plane (the dashed contour in the illustration). And in the lower half-plane, $\hat{f}(\omega) = \frac{1}{1+i\omega\tau}$ has no singularities. So Cauchy's Theorem says that the contour integral, and hence, f(t), is zero when t < 0.

Looking back at the above argument, we see that we didn't need to be able to integrate $\hat{f}(\omega)$; we just needed to know that its integral was bounded. So there's an important bottom line: when there are no singularities of $\hat{f}(\omega)$ in the lower half-plane and $|\hat{f}(\omega)|$ behaves "nicely" for large

 ω , then the corresponding Fourier inverse $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} \hat{f}(\omega) d\omega$ will be the impulse

response of a causal system. The converse is also true: if there are singularities of $\hat{f}(\omega)$ in the lower half plane, then $\hat{f}(\omega)$ cannot be the transfer function of a causal system.

Q3. When can a linear filter be realized as a continuum concatenation of another linear filter? Consider a linear filter L of a causal system, with transfer function $\hat{L}(\omega)$. A. If there is a linear filter B_2 , for which a series combination of B_2 with itself yields L, then what is $\hat{B}_2(\omega)$? If there is a linear filter B_n , for which an series combination of n copies yields L, then what is $\hat{B}_n(\omega)$?

We need
$$(\hat{B}_2(\omega))^2 = \hat{L}(\omega)$$
, i.e., $\hat{B}_2(\omega) = (\hat{L}(\omega))^{1/2}$. Similarly, $(\hat{B}_n(\omega))^n = \hat{L}(\omega)$, i.e., $\hat{B}_n(\omega) = (\hat{L}(\omega))^{1/n}$.

B. In the above scenario, as n grows, it seems reasonable to hypothesize that B_n becomes closer and closer to the identity – since the net result of n successive applications of B_n must remain fixed. What is $\hat{G}(\omega) = \lim_{n \to \infty} n(\hat{B}_n(\omega) - 1)$? If this limit exists, then G can be regarded as the infinitesimal transformation that generates L, since $\hat{B}_n(\omega) \approx I + \frac{1}{n}\hat{G}(\omega)$.

We want $\lim_{n\to\infty} n((\hat{L}(\omega))^{1/n} - 1) = \lim_{\varepsilon\to 0} \frac{(\hat{L}(\omega))^{\varepsilon} - 1}{\varepsilon}$. Apply L'hopital's Rule. The derivative of the denominator is 1. So we need the derivative of the numerator: $\hat{G}(\omega) = \lim_{n\to\infty} n((\hat{L}(\omega))^{1/n} - 1) = \frac{d}{d\varepsilon} ((\hat{L}(\omega))^{\varepsilon} - 1) \Big|_{\varepsilon=0} = \frac{d}{d\varepsilon} (e^{\varepsilon \log \hat{L}(\omega)} - 1) \Big|_{\varepsilon=0}$. Or, $\hat{L}(\omega) = e^{\hat{G}(\omega)}$. $= (\log \hat{L}(\omega) e^{\varepsilon \log \hat{L}(\omega)} - 1) \Big|_{\varepsilon=0} = \log \hat{L}(\omega)$ C. There is a converse of Q2: if there are singularities of $\hat{f}(\omega)$ in the lower half plane, then $\hat{f}(\omega)$ cannot be the transfer function of a causal system. So, given that L is a causal system (and therefore, that $\hat{L}(\omega)$ has no singularities in the lower half plane), does it follow that every causal system has a causal infinitesimal? If not, what is an example?

No. Since $\hat{G}(\omega) = \log \hat{L}(\omega)$, we need to check if the absence of singularities for $\hat{L}(\omega)$ in the lower half plane guarantees that there are no singularities for $\log \hat{L}(\omega)$. The logarithm has a singularity when its argument is either infinity or zero. So if $\hat{L}(\omega)$ has a zero in the lower half plane – which is not a singularity -- then $\hat{G}(\omega) = \log \hat{L}(\omega)$ has a singularity.

A simple example is $\hat{h}(\omega) = \frac{1 - i\omega\tau}{1 + i\omega\tau}$, which is related to the transfer function in Q1 by $\hat{h}(\omega) = 2\hat{f}(\omega) - 1$. $\hat{h}(\frac{-i}{\tau}) = 0$, so, although $\hat{h}(\omega)$ does not have a singularity in the lower half plane, $\log \hat{h}(\omega)$ does.

Comment: Transfer functions that have causal infinitesimals – equivalently, that do not have zeros in the lower half plane – are called "minimum phase" transfer functions.

 $\hat{h}(\omega) = \frac{1-i\omega\tau}{1+i\omega\tau}$ is the archetype of a transfer function that is not minimum-phase. Note that $|\hat{h}(\omega)| = 1$ -- so that concatenation with this filter adds a phase shift, but without changing amplitudes.