Linear Systems: Black Boxes and Beyond

Homework #1 (2022-2023), Questions

Transfer functions and complex-analytic properties.

Q1. A simple transfer function.

For the impulse response $f(t) = \begin{cases} \frac{1}{\tau} e^{-t/\tau}, t \ge 0\\ 0, t < 0 \end{cases}$ -- which is the impulse response of a single-

stage "RC" filter with time constant --, compute the transfer function, $\hat{f}(\omega) = \int_{-\infty}^{\infty} e^{-i\omega t} f(t) dt$.

Q2. Fourier inversion via contour integration.

For the transfer function $\hat{f}(\omega)$ of Question 1, recover the Fourier transform

 $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega t} \hat{f}(\omega) d\omega$ via contour integration. Use a closed contour that runs along the real

axis from, say, -M to M and then returns to its start via an excursion into either the upper- or lower- half plane.

Q3. When can a linear filter be realized as a continuum concatenation of another linear filter? Consider a linear filter *L* of a causal system, with transfer function $\hat{L}(\omega)$.

A. If there is a linear filter B_2 , for which a series combination of B_2 with itself yields L, then what is $\hat{B}_2(\omega)$? If there is a linear filter B_n , for which an series combination of n copies yields L, then what is $\hat{B}_n(\omega)$?

B. In the above scenario, as *n* grows, it seems reasonable to hypothesize that B_n becomes closer and closer to the identity – since the net result of *n* successive applications of B_n must remain fixed. What is $\hat{G}(\omega) = \lim_{n \to \infty} n(\hat{B}_n(\omega) - 1)$? If this limit exists, then *G* can be regarded as the infinitesimal transformation that generates *L*, since $\hat{B}_n(\omega) \approx I + \frac{1}{n}\hat{G}(\omega)$.

C. There is a converse of Q2: if there are singularities of $\hat{f}(\omega)$ in the lower half plane, then $\hat{f}(\omega)$ cannot be the transfer function of a causal system. So, given that *L* is a causal system (and therefore, that $\hat{L}(\omega)$ has no singularities in the lower half plane), does it follow that every causal system has a causal infinitesimal? If not, what is an example?