Linear Systems: Black Boxes and Beyond

Homework \#1 (2022-2023), Questions
Transfer functions and complex-analytic properties.
Q1. A simple transfer function.
For the impulse response $f(t)=\left\{\begin{array}{c}\frac{1}{\tau} e^{-t / \tau}, t \geq 0 \\ 0, t<0\end{array}\right.$-- which is the impulse response of a single-
stage "RC" filter with time constant --, compute the transfer function, $\hat{f}(\omega)=\int_{-\infty}^{\infty} e^{-i \omega t} f(t) d t$.

Q2. Fourier inversion via contour integration.
For the transfer function $\hat{f}(\omega)$ of Question 1, recover the Fourier transform
$f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i \omega t} \hat{f}(\omega) d \omega$ via contour integration. Use a closed contour that runs along the real axis from, say, $-M$ to M and then returns to its start via an excursion into either the upper- or lower- half plane.

Q3. When can a linear filter be realized as a continuum concatenation of another linear filter? Consider a linear filter L of a causal system, with transfer function $\hat{L}(\omega)$.
A. If there is a linear filter B_{2}, for which a series combination of B_{2} with itself yields L, then what is $\hat{B}_{2}(\omega)$? If there is a linear filter B_{n}, for which an series combination of n copies yields L, then what is $\hat{B}_{n}(\omega)$?
B. In the above scenario, as n grows, it seems reasonable to hypothesize that B_{n} becomes closer and closer to the identity - since the net result of n successive applications of B_{n} must remain fixed. What is $\hat{G}(\omega)=\lim _{n \rightarrow \infty} n\left(\hat{B}_{n}(\omega)-1\right)$? If this limit exists, then G can be regarded as the infinitesimal transformation that generates L, since $\hat{B}_{n}(\omega) \approx I+\frac{1}{n} \hat{G}(\omega)$.
C. There is a converse of Q2: if there are singularities of $\hat{f}(\omega)$ in the lower half plane, then $\hat{f}(\omega)$ cannot be the transfer function of a causal system. So, given that L is a causal system (and therefore, that $\hat{L}(\omega)$ has no singularities in the lower half plane), does it follow that every causal system has a causal infinitesimal? If not, what is an example?

