Transfer functions and complex-analytic properties.

Q1. A simple transfer function.
For the impulse response \(f(t) = \begin{cases} \frac{1}{\tau} e^{-t/\tau}, & t \geq 0 \\ 0, & t < 0 \end{cases} \) -- which is the impulse response of a single-stage “RC” filter with time constant --, compute the transfer function, \(\hat{f}(\omega) = \int_{-\infty}^{\infty} e^{-j\omega t} f(t) dt \).

Q2. Fourier inversion via contour integration.
For the transfer function \(\hat{f}(\omega) \) of Question 1, recover the Fourier transform
\[f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{j\omega t} \hat{f}(\omega) d\omega \]
via contour integration. Use a closed contour that runs along the real axis from, say, \(-M\) to \(M\) and then returns to its start via an excursion into either the upper- or lower- half plane.

Q3. When can a linear filter be realized as a continuum concatenation of another linear filter?
Consider a linear filter \(L \) of a causal system, with transfer function \(\hat{L}(\omega) \).

A. If there is a linear filter \(B_2 \), for which a series combination of \(B_2 \) with itself yields \(L \), then what is \(\hat{B}_2(\omega) \)? If there is a linear filter \(B_n \), for which an series combination of \(n \) copies yields \(L \), then what is \(\hat{B}_n(\omega) \)?
B. In the above scenario, as \(n \) grows, it seems reasonable to hypothesize that \(B_n \) becomes closer and closer to the identity – since the net result of \(n \) successive applications of \(B_n \) must remain fixed. What is \(\hat{G}(\omega) = \lim_{n \to \infty} n(\hat{B}_n(\omega) - 1) \)? If this limit exists, then \(G \) can be regarded as the infinitesimal transformation that generates \(L \), since \(\hat{B}_n(\omega) \approx I + \frac{1}{n} \hat{G}(\omega) \).

C. There is a converse of Q2: if there are singularities of \(\hat{f}(\omega) \) in the lower half plane, then \(\hat{f}(\omega) \) cannot be the transfer function of a causal system. So, given that \(L \) is a causal system (and therefore, that \(\hat{L}(\omega) \) has no singularities in the lower half plane), does it follow that every causal system has a causal infinitesimal? If not, what is an example?