Linear Systems: Black Boxes and Beyond

Homework \#2 (2022-2023), Questions

Spectral Leakage

Q1. As mentioned, the amount of spectral leakage associated with a given window function $W(t)$ can be characterized by $|\tilde{W}(\Delta \omega)|^{2}$, where $\Delta \omega=\omega-\omega_{0}, \omega_{0}$ is the frequency of a infinitesimally narrow spectral peak, and ω is the center of a bin of the estimated power spectrum. Here we determine the behavior of $|\tilde{W}(\Delta \omega)|^{2}$ for some simple and popular window functions.
A. For the "square" window $W_{\text {square }}(t)=\left\{\begin{array}{l}1,|t| \leq \frac{L}{2} \\ 0,|t|>\frac{L}{2}\end{array}\right.$, determine $\left|\tilde{W}_{\text {square }}(\Delta \omega)\right|^{2}$, its behavior for large $|\Delta \omega|$, and its zeroes.
B. As in A, but for the "triangle" window $W_{\text {triangle }}(t)=\left\{\begin{array}{c}1-\frac{2}{L}|t|,|t| \leq \frac{L}{2} \\ 0,|t|>\frac{L}{2}\end{array}\right.$.
C. As in A, but for the "cosine bell" window $W_{\text {cosbell }}(t)=\left\{\begin{array}{c}\frac{1}{2}\left(1+\cos \frac{2 \pi t}{L}\right),|t| \leq \frac{L}{2} \\ 0,|t|>\frac{L}{2}\end{array}\right.$.
D. Plot the windows and their corresponding spectral leakage.

Q2. Algebraic properties of time- and frequency-domain restriction
Consider the vector space of square-integrable functions of time (our standard Hilbert space), and the standard inner product, $\langle f, g\rangle=\int_{-\infty}^{\infty} f(x) \overline{g(x)} d x=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \tilde{f}(\omega) \overline{\tilde{g}(\omega)} d \omega$ (the last equality from Parseval's Theorem). Now consider a set of times $S_{\text {time }}$ and an arbitrary domain of (realvalued) frequencies $S_{\text {freq }}$.
Define two linear operators: D, defined by $D f(x)=\left\{\begin{array}{c}f(x), x \in S_{\text {time }} \\ 0, x \notin S_{\text {time }}\end{array}\right.$, and B, defined by its action on the Fourier transform of $f: B \tilde{f}(\omega)=\left\{\begin{array}{c}\tilde{f}(\omega), \omega \in S_{\text {freq }} \\ 0, \omega \notin S_{\text {freq }}\end{array}\right.$. In the standard development
of multitaper analysis, $S_{\text {time }}$ is an interval, and $S_{\text {freq }}$ is a range such as $|\omega| \leq \omega_{\text {max }}$; here we are dispensing with this requirement and just focusing on the algebraic properties.
A. Show that D and B are self-adjoint.
B. Show that that D and B are projections.
C. Do D and B commute?
D. Show that $D B D$ and $B D B$ are self-adjoint.
E. From D, we see that $D B D$ and $B D B$ are "normal" operators (they commute with their adjoints), and therefore, via the spectral theorem, their eigenvectors span the entire vector space. Show that eigenvalues of $D B D$ are also eigenvalues of $D B$, and that if f is an eigenvector of $D B D$, then $D f$ is an eigenvector of $D B$, with the same eigenvalue. Similarly, if f is an eigenvector of $B D B$, then $B f$ is an eigenvector of $B D$, with the same eigenvalue.
F. Show that, for any f in the vector space, that $\langle D f, D f\rangle \leq\langle f, f\rangle$ and similarly $\langle B f, B f\rangle \leq\langle f, f\rangle$.
G. Using F, show that all eigenvalues of $D B$ (and $B D$) are ≤ 1.

