
Linear Transformations and Group Representations 
 
Homework #1 (2022-2023), Answers 
 
Characteristic equations, etc. 

Q1. Find the characteristic equation of 
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The characteristic equation is 
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Via the quadratic formula, 
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Q2. Say A  is a linear transformation on V , with a full set of distinct eigenvalues 

1,..., m  , and corresponding eigenvectors 1,..., mv v , and  B  is a linear transformation on 
W , with a full set of distinct eigenvalues 1,..., n  , and eigenvectors 1,..., nw w .  We define 
A B  as a linear transformation in V W  by its action on elementary tensor products 
 ( ) ( ) ( )A B v w Av Bw    , extended by linearity to all of V W . 
 
A. What are the eigenvalues and eigenvectors of A B ? 
We can build mn  distinct eigenvectors from elementary tensor products of the 
eigenvectors in V  and W , and, since mn  is the dimension of V W , this is all of them: 
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B. What is ( )tr A B , in terms of  ( )tr A  and ( )tr B ?  
 
Since the trace is the sum of the eigenvalues: 
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C. Let A B  and V W .  What are the eigenvectors and eigenvalues of 2( )sym A , i.e., 
the action of A  in 2( )sym V  ? What are the eigenvectors and eigenvalues of 2( )anti A ? 
 



For 2( )sym A : Two kinds of eigenvectors: first, the 1 ( 1)
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n n  eigenvectors for each 

distinct pair of eigenvectors of A :  1( )
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eigenvalues i j  (for example from part A), applied to each term. Then, there are n  

eigenvectors of the form ( )i i i isym v v v v   , and these, similarly, have eigenvalue 2
i .   

For 2( )anti A , the 1 ( 1)
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have eigenvalues i j .  
 
 
D. What is 2( ( ))tr sym A  and 2( ( ))tr anti A  in terms of ( )tr A  and 2( )tr A ? 
 
Adding up the eigenvalues in C for sym yields  2 2( ( )) i j i
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 In general one can rearrange a sum over pairs as follows: 
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To compute 2( )tr A : note that 2A  has eigenvalues 2

i  (with the same eigenvectors as A ), 
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