Linear Transformations and Group Representations

Homework \#1 (2022-2023), Answers
Characteristic equations, etc.
Q1. Find the characteristic equation of $R=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$. Find its roots, i.e., the eigenvalues of R.

The characteristic equation is

$$
\begin{aligned}
& \operatorname{det}(z I-R)=\operatorname{det}\left(\begin{array}{cc}
z-\cos \theta & -\sin \theta \\
\sin \theta & z-\cos \theta
\end{array}\right)=(z-\cos \theta)^{2}+\sin ^{2} \theta . \\
& =z^{2}-2 z \cos \theta+1
\end{aligned}
$$

Via the quadratic formula,
$z=\frac{2 \cos \theta \pm \sqrt{4 \cos ^{2} \theta-4}}{2}=\cos \theta \pm \sqrt{-\sin ^{2} \theta}=\cos \theta \pm i \sin \theta=e^{ \pm i \theta}$
Q2. Say A is a linear transformation on V, with a full set of distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$, and corresponding eigenvectors v_{1}, \ldots, v_{m}, and B is a linear transformation on W, with a full set of distinct eigenvalues μ_{1}, \ldots, μ_{n}, and eigenvectors w_{1}, \ldots, w_{n}. We define $A \otimes B$ as a linear transformation in $V \otimes W$ by its action on elementary tensor products $(A \otimes B)(v \otimes w)=(A v) \otimes(B w)$, extended by linearity to all of $V \otimes W$.
A. What are the eigenvalues and eigenvectors of $A \otimes B$?

We can build $m n$ distinct eigenvectors from elementary tensor products of the eigenvectors in V and W, and, since $m n$ is the dimension of $V \otimes W$, this is all of them: $(A \otimes B)\left(v_{i} \otimes w_{j}\right)=\left(A v_{i}\right) \otimes\left(B w_{j}\right)=\left(\lambda_{i} v_{i}\right) \otimes\left(\mu_{j} w_{j}\right)=\left(\lambda_{i} \mu_{j}\right)\left(v_{i} \otimes w_{j}\right)$
B. What is $\operatorname{tr}(A \otimes B)$, in terms of $\operatorname{tr}(A)$ and $\operatorname{tr}(B)$?

Since the trace is the sum of the eigenvalues:
$\operatorname{tr}(A \otimes B)=\sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{i} \mu_{j}=\left(\sum_{i=1}^{m} \lambda_{i}\right)\left(\sum_{j=1}^{n} \mu_{j}\right)=(\operatorname{tr} A)(\operatorname{tr} B)$
C. Let $A=B$ and $V=W$. What are the eigenvectors and eigenvalues of $\operatorname{sym}\left(A^{\otimes 2}\right)$, i.e., the action of A in $\operatorname{sym}\left(V^{\otimes 2}\right)$? What are the eigenvectors and eigenvalues of $\operatorname{anti}\left(A^{\otimes 2}\right)$?

For $\operatorname{sym}\left(A^{\otimes 2}\right)$: Two kinds of eigenvectors: first, the $\frac{1}{2} n(n-1)$ eigenvectors for each distinct pair of eigenvectors of $A: \operatorname{sym}\left(v_{i} \otimes v_{j}\right)=\frac{1}{2}\left(v_{i} \otimes v_{j}+v_{j} \otimes v_{i}\right)$, and these have eigenvalues $\lambda_{i} \lambda_{j}$ (for example from part A), applied to each term. Then, there are n eigenvectors of the form $\operatorname{sym}\left(v_{i} \otimes v_{i}\right)=v_{i} \otimes v_{i}$, and these, similarly, have eigenvalue λ_{i}^{2}. For $\operatorname{anti}\left(A^{\otimes 2}\right)$, the $\frac{1}{2} n(n-1)$ eigenvectors are $\operatorname{anti}\left(v_{i} \otimes v_{j}\right)=\frac{1}{2}\left(v_{i} \otimes v_{j}-v_{j} \otimes v_{i}\right)$, which have eigenvalues $\lambda_{i} \lambda_{j}$.
D. What is $\operatorname{tr}\left(\operatorname{sym}\left(A^{\otimes 2}\right)\right)$ and $\operatorname{tr}\left(\operatorname{anti}\left(A^{\otimes 2}\right)\right)$ in terms of $\operatorname{tr}(A)$ and $\operatorname{tr}\left(A^{2}\right)$?

Adding up the eigenvalues in C for sym yields $\operatorname{tr}\left(\operatorname{sym}\left(A^{\otimes 2}\right)\right)=\sum_{i<j} \lambda_{i} \lambda_{j}+\sum_{i} \lambda_{i}^{2}$ and for anti yields $\operatorname{tr}\left(\operatorname{anti}\left(A^{\otimes 2}\right)\right)=\sum_{i<j} \lambda_{i} \lambda_{j}$.

In general one can rearrange a sum over pairs as follows:
$\sum_{i<j} x_{i} x_{j}=\frac{1}{2} \sum_{\text {alli }, j} x_{i} x_{j}-\frac{1}{2} \sum_{i} x_{i}^{2}=\frac{1}{2}\left(\sum_{i} x_{i}\right)^{2}-\frac{1}{2} \sum_{i} x_{i}^{2}$. So $\operatorname{tr}\left(\operatorname{sym}\left(A^{\otimes 2}\right)\right)=\sum_{i<j} \lambda_{i} \lambda_{j}+\sum_{i} \lambda_{i}^{2}=\frac{1}{2}\left(\sum_{i} \lambda_{i}\right)^{2}+\frac{1}{2} \sum_{i} \lambda_{i}^{2}=\frac{1}{2}(\operatorname{tr} A)^{2}+\frac{1}{2} \sum_{i} \lambda_{i}^{2}$ and $\operatorname{tr}\left(\operatorname{anti}\left(A^{\otimes 2}\right)\right)=\sum_{i<j} \lambda_{i} \lambda_{j}=\frac{1}{2}\left(\sum_{i} \lambda_{i}\right)^{2}-\frac{1}{2} \sum_{i} \lambda_{i}^{2}=\frac{1}{2}(\operatorname{tr} A)^{2}-\frac{1}{2} \sum_{i} \lambda_{i}^{2}$

To compute $\operatorname{tr}\left(A^{2}\right)$: note that A^{2} has eigenvalues λ_{i}^{2} (with the same eigenvectors as A), $\sum_{i} \lambda_{i}^{2}=\operatorname{tr}\left(A^{2}\right)$.
So $\operatorname{tr}\left(\operatorname{sym}\left(A^{\otimes 2}\right)\right)=\frac{1}{2}(\operatorname{tr} A)^{2}+\frac{1}{2} \operatorname{tr}\left(A^{2}\right)$ and $\operatorname{tr}\left(\operatorname{anti}\left(A^{\otimes 2}\right)\right)=\frac{1}{2}(\operatorname{tr} A)^{2}-\frac{1}{2} \sum_{i} \operatorname{tr}\left(A^{2}\right)$.

