Linear Transformations and Group Representations

Homework \#1 (2022-2023), Questions
Characteristic equations, etc.
Q1. Find the characteristic equation of $R=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$. Find its roots, i.e., the eigenvalues of R.

Q2. Say A is a linear transformation on V, with a full set of distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{m}$, and corresponding eigenvectors v_{1}, \ldots, v_{m}, and B is a linear transformation on W, with a full set of distinct eigenvalues μ_{1}, \ldots, μ_{n}, and eigenvectors w_{1}, \ldots, w_{n}. We define $A \otimes B$ as a linear transformation in $V \otimes W$ by its action on elementary tensor products $(A \otimes B)(v \otimes w)=(A v) \otimes(B w)$, extended by linearity to all of $V \otimes W$.
A. What are the eigenvalues and eigenvectors of $A \otimes B$?
B. What is $\operatorname{tr}(A \otimes B)$, in terms of $\operatorname{tr}(A)$ and $\operatorname{tr}(B)$?
C. Let $A=B$ and $V=W$. What are the eigenvectors and eigenvalues of $\operatorname{sym}\left(A^{\otimes 2}\right)$, i.e., the action of A in $\operatorname{sym}\left(V^{\otimes 2}\right)$? What are the eigenvectors and eigenvalues of $\operatorname{anti}\left(A^{\otimes 2}\right)$?
D. What is $\operatorname{tr}\left(\operatorname{sym}\left(A^{\otimes 2}\right)\right)$ and $\operatorname{tr}\left(\operatorname{anti}\left(A^{\otimes 2}\right)\right)$ in terms of $\operatorname{tr}(A)$ and $\operatorname{tr}\left(A^{2}\right)$?

