Linear Transformations and Group Representations

Homework #1 (2022-2023), Questions

Characteristic equations, etc.

Q1. Find the characteristic equation of $R = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$. Find its roots, i.e., the eigenvalues of *R*.

Q2. Say *A* is a linear transformation on *V*, with a full set of distinct eigenvalues $\lambda_1, ..., \lambda_m$, and corresponding eigenvectors $v_1, ..., v_m$, and *B* is a linear transformation on *W*, with a full set of distinct eigenvalues $\mu_1, ..., \mu_n$, and eigenvectors $w_1, ..., w_n$. We define $A \otimes B$ as a linear transformation in $V \otimes W$ by its action on elementary tensor products $(A \otimes B)(v \otimes w) = (Av) \otimes (Bw)$, extended by linearity to all of $V \otimes W$.

A. What are the eigenvalues and eigenvectors of $A \otimes B$?

B. What is $tr(A \otimes B)$, in terms of tr(A) and tr(B)?

C. Let A = B and V = W. What are the eigenvectors and eigenvalues of $sym(A^{\otimes 2})$, i.e., the action of A in $sym(V^{\otimes 2})$? What are the eigenvectors and eigenvalues of $anti(A^{\otimes 2})$?

D. What is $tr(sym(A^{\otimes 2}))$ and $tr(anti(A^{\otimes 2}))$ in terms of tr(A) and $tr(A^{2})$?