Homework \#2 (2022-2023), Answers
Projections and their relationships
See also Q1 and Q3 of 2021-2022 LTGR homework \#2

Q1: Commuting projections

A. Given projections P and Q with $P Q=0$, is $Q P=0$?

Hint: First show that if $\langle x, z\rangle=0$ for all x, then $z=0$. Then consider $\langle P Q x, y\rangle$.
For the hint: if $\langle x, z\rangle=0$ for all x, then, for $x=z,\langle z, z\rangle=0$. But since the inner product is positive-definite, this means that $z=0$.
Now consider $\langle P Q x, y\rangle$. This is zero for all x, since we've hypothesized that $P Q=0$. But also, $\langle P Q x, y\rangle=\langle Q x, P y\rangle=\langle x, Q P y\rangle$, applying the self-adjoint property of P, and then self the self-adjoint property of Q. So $\langle x, Q P y\rangle=0$ for all x, and therefore $Q P y=0$. Since this holds for all $y, Q P=0$.
B. What is the geometric interpretation of this?

The subspaces that P and Q project into are have only the origin in common, and, every vector in the P subspace is orthogonal to every vector in the Q-subspace.
C. Given projections P and Q with $P Q=Q P$, is $P Q$ a projection?

We need to show that $P Q$ is self-adjoint and that $(P Q)^{2}=P Q$.
For self-adjointness: $\langle P Q x, y\rangle=\langle Q x, P y\rangle=\langle x, Q P y\rangle=\langle x, P Q y\rangle$, applying the self-adjoint property of P, and then self the self-adjoint property of Q, and then commutativity of P and Q.
For idempotence:
$(P Q)^{2}=P Q P Q=P^{2} Q^{2}=P Q$, where the second equality uses commutativity and the third uses idempotence of P and Q.
D. (Converse of C) Given projections P and Q with $P Q$ a projection, is $P Q=Q P$? $\langle P Q x, y\rangle=\langle x, P Q y\rangle$ because $P Q$ is a projection and therefore self-adjoint. But also, $\langle P Q x, y\rangle=\langle Q x, P y\rangle=\langle x, Q P y\rangle$, since P and Q are self-adjoint. So, $\langle x, P Q y\rangle=\langle x, Q P y\rangle$, which means that $\langle x,(P Q-Q P) y\rangle=0$ for any x and y. Using the hint of part A, this means that $(P Q-Q P) y=0$ for all y, i.e., $P Q-Q P=0$.

Note that here, we didn't use idempotency. So we have actually shown that if P, Q, and $P Q$ are self-adjoint, then $P Q=Q P$.
E. Given projections P, Q that commute, and $P Q \neq 0$, consider $X=P-P Q, Y=Q-P Q$, and $Z=P Q$: (i) Show that X, Y, and Z are projections. (ii) What is the geometric interpretation?

For (i), Z, see part C. For X and Y : Note that $X=P(I-Q)$, where $I-Q$ is a projection (since Q is a projection), and P commutes with $I-Q$ since P commutes with Q. So part C also demonstrates that X is a projection, with $I-Q$ playing the role of Q. Similarly, part C demonstrates that Y is a projection, with $I-P$ playing the role of P.

For (ii): Noe that X, Y, and Z all commute - and each pairwise product is zero. For example: $X Y=(P-P Q)(Q-Q P)=P Q-P Q Q-P Q P+P Q Q P$
$=P Q-P Q-P^{2} Q+P^{2} Q^{2}$
$=P Q-P Q-P Q+P Q$
$=0$
orthogonal. A slightly different viewpoint: $P Q$ is the intersection of the ranges of P and Q, and $X=P-P Q, Y=Q-P Q$ "project out" this intersection.

