Groups, Fields, and Vector Spaces

Homework #2 (2024-2025), Questions

Q1: Homomorphisms, kernels, normal subgroups

We showed that for any homomorphism $\varphi: G \to H$, the kernel of φ , i.e., the elements $g \in G$ for which $\varphi(g) = e_H$, is a subgroup of G. Show that it is a normal subgroup.

Q2: Inner and outer automorphisms

A. For $G = \mathbb{Z}_n$ (the cyclic group of order n), determine all of the automorphisms.

B. Recall: For any group G, the automorphism group A(G) is the group of isomorphisms of G, i.e, one-to-one mappings φ from G to G which preserve the group operation in G. The group operation in A(G) is composition: $\varphi_1 \circ \varphi_2$ is the automorphism of G defined by $\varphi_1 \circ \varphi_2(g) = \varphi_1 \left(\varphi_2(g) \right)$. We also said that there is a special set of automorphisms, the "inner" automorphisms. For any element α in G, the inner automorphism φ_α is defined by $\varphi_\alpha(g) = \alpha g \alpha^{-1}$. We called the mapping from G to A(G) the "adjoint" map, and noted that it is a homomorphism from G to a subgroup of (and possibly all of) A(G). We also noted that $Adj: G \to A(G)$ is, itself, a homomorphism: For any $g \in G$,

$$(\varphi_{\alpha} \circ \varphi_{\beta})(g) = \varphi_{\alpha} (\varphi_{\beta}(g)) = \varphi_{\alpha} (\beta g \beta^{-1}) = \alpha (\beta g \beta^{-1}) \alpha^{-1} = \alpha \beta g \beta^{-1} \alpha^{-1} = (\alpha \beta) g (\alpha \beta)^{-1} = \varphi_{\alpha\beta} (g), \text{ so }$$

$$Adj(\alpha) \circ Adj(\beta) = Adj(\alpha\beta).$$

Show that the inner automorphisms I(G) are a normal subgroup of A(G).

Q3: Direct sums of groups

Given two groups G and H with group operations \circ_G and \circ_H , the direct sum $G \oplus H$ is a group consisting of ordered pairs of elements (g,h), with the group operation defined by

$$(g_1,h_1)\circ(g_2,h_2)=(g_1\circ_G g_2,h_1\circ_H h_2).$$

- A. Convince yourself that $G \oplus H$ is a group.
- B. If G and H are finite, with sizes |G| and |H|, what is the size of $G \oplus H$?
- C. Consider $\mathbb{Z}_2 \oplus \mathbb{Z}_2$. What is its automorphism group?

Q4: A challenge

 $G \oplus H \oplus K$ is defined analogously as a group of ordered triplets. What is the size of $\mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_2$, and what is the size of its automorphism group?