Groups, Fields, and Vector Spaces
Homework #3 (2024-2025), Answers
Q1: Duals of infinite-dimensional spaces

A. Consider the (infinite-dimensional) vector space V of real-valued functions f(x) on the interval [0,1]
that are “nice” — continuous, smooth, integrable. For any g €V, there is a mapping Ag from V to the base

1
field, defined by (Ag)(f) = fg(x)f(x)dx. Show that Ag € V", i.e., that it is a linear map from V to the base
0

field.

We need to show that Ag is linear, i.c., that (Ag)(a f, + o, f;) = o (Ag (1)) + o, (Ag(f>)).

This follows from basic properties of integrals:

(Ag)@fi+anfi) = [ g fi(0)+ 0, o (x))dx

= o [ @) f;(0dx+a, [ 200 f(0)dx =, ((4g) () + . ((42) (1)

B. For any y €[0,1], there is another map from V to the base field, defined by (By)(f)= f(»). Show
that By € V", i.e., that it is a linear map from V to the base field.

To show (By)(f +g)=(By)(f)+(By)(g): Left hand side is (f + g)(»), which, by definition of addition in
V,is f(y)+g(y). Right-hand side is also f(y)+ g(y), applying By to f and g separately.

C. For any y €[0,1], is there a g €V for which By = Ag?

No. We'dneed a g for which (Ag)(f)=(By)(f),ie., fg(x)f(x)dx:f(y). So g would have to be zero

forall x= y. Since V' (by definition) only contains smooth functions, then g would have to be zero
everywhere,. While we can imagine a generalized function, which has these properties i.e., 6(x—y), it does
not have the smoothness conditions required to be in V.

Q2: Direct path to the trace as an intrinsic property of vector-space homomorphisms (AKA matrices)

This homework is closely modeled after a Quora posting of Senia Sheydvasser. Assistant Professor Department
of Mathematics, Bates College

Consider a vector space V and its dual space V. Elements in V" QV are sums of elementary tensor products
S=0¢p®v, for xcV and ¢ €V". Thus, elementsin V" QV can also be considered to be in Hom(V,V') (i.e.,
there is a natural homomorphism L from V" QV to Hom(V,V)). The correspondence L between V' QV to
Hom(V,V') takes an elementary tensor product ® = ¢ ®@v to L(®) € Hom(V,V) given by L(P)(w)=p(w)v.
(Note ¢(w) is a scalar). L is then extended to sums of elementary tensor products by linearity.



A. For &, =¢, ®v, and ®, = ¢, ®v,, determine the action of L(®,)o L(®,) on an arbitrary weV , where o is
composition in Hom(V,V'). Express this as the image under L of an elementary tensor product ®, €V QV .
Use this to define a composition rule in V" @V, ®, =@, 0®,, for which L(®,) = L(®,)o L(P,)

We determine, for an arbitrary w €V, the action of L(®,)o L(P,):

(L(®,)0 L(®,))(w) = L(®,) (L(P,)(w)), since o is composition.
L(®)(L(®,)(w)) = L(®,)(¢,(w)(v,)), definition of L.

L(CDI)(qbz(w)(vz)) = ,(W)L(P,)(v,), since L(P,) is linear and ¢,(w) is a scalar.
&,(W)L(P))(v,) = ¢, (W), (v,)v, , definition of L.

So (L((IDI) o L(@Z))(w) = @,(W)¢,(v,)v,. The right-hand side is also L ((ngl v,)o, ) Qv ) (w) . Since this holds for
all w, @, =(¢,(v,)9,)®@v, =¢(v,) (¢, ®V,), i.e, another elementary tensor product.

Composition in ¥* ®V is now defined by (¢, @v,)o(d, ®@v,)=¢,(v,)(¢, ®v,).

B. Determine the ®, € V' ®V for which L(®,)=L(®,)o L(®,).
Asin A, &, = ¢2(V1)(¢1 ®V2)
C. There is also a natural mapping T from V" QV to the base field of scalars, defined by T(®)= ¢(v) for

elementary tensor products and extended to all of V" @V by linearity. Determine T(®,) and T(®,,). What
happens?

T((I)lz) = T(¢1(V2)<¢2 ®vl>) = ¢1(v2)T<¢2 ®V1): ¢1(v2)¢2(v1)-

Simﬂarly T(q)zl) = ¢2 (V1)¢1 (Vz) .
So, T(®,)=T(®,,),i.e., T(® 0®,)=T(®,0d,).

1 0
: : : : : 1
D. Now interpret T in coordinates. Specifically, take the “one-hot” basis for V., v, =| . |[,v,=|.|,-=-,v, =|. |,
0 0 1

and a typical vectorin xeV, x= Zxkvk . Take the one-hot basis for V", where ¢, maps ¢, (v,) =1 but
k=1

¢;(v)=0 for j=k,anda typical p€V", p= Zgokgbk . Written more compactly, ¢,(v,)=0,, . Then the

k=1

M, =¢; ®v, area basis for V" QV, and an arbitrary M €V" @V can be written as M = Z m; M,,,

Jsk=1
where the m,, are the matrix entries for M . Determine T(M ;) and then T(M).

T(M,,)=T(¢; ®v,)=6,,, by the definition of T in part C.
By linearity of T,



TWM)Y=> m M, =Y mj,kT(Mj,k) =Y myb =y m;.
=

jk=1 Jk=1 jhk=1
So weve defined the trace in a coordinate-free way, and demonstrated its key property: that the trace of a
pairwise composition is independent of the order of composition.
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Originally Answered: Why is tr(AB) = tr(BA) true?
The definition of trace as the sum of the diagonal entries of a matrix is easy to learn and
easy to understand. However, it doesn't (a priori) have any nice geometric or other
interpretation---it just looks a computation tool. Attacking it from this perspective basically
means that you are stuck with computational proofs of facts like tr(AB) = tr(BA).

They aren't bad, per se. They are easy to understand, and certainly what should be shown
when someone is initially learning linear algebra. There is a deeper reason for why
tr(AB) = tr(BA), but it is pretty abstract and in particular requires the tensor product
in order to understand.

Consider the space of linear operators from a vectors space V' back to itself. If we choose a
particular set of coordinates, such operators will look like square matrices. However, we
shall aim to avoid coordinates as much as possible.

We denote by V'* the dual space of V, which the space of linear functionals on V---that
is, linear maps A such that if we plug in a vector v, A(v) is a scalar.

If we then take the tensor product V* ® V/, it is isomorphic to the space of linear
operators V' — V. The isomorphism works like this: if w € V, then (A ® v)w = A(w)v.

We can also figure out how composition works out under this isomorphism---recall that
composition of linear maps is just the same thing as multiplying the corresponding
matrices.

(A2 ® v2) (M @ v1)w)
= (A2 ® ) (A1 (w)v1)
=X (A (w)v1) v
= Ao (v1) M (w)vs

hence

(A2 ®3) 0 (A1 ®@v1) = Ao (v1) (M1 ® v2)

Now, how does the trace come in? Well, there is a natural map from
V* @ V to the field of scalars which works like this: A ® v = A(v). The amazing thing is
that, if you work everything out in coordinates, this is the trace.

This shows that the trace, far from being some abstract computational tool, is actually a
fundamental and natural map in linear algebra. In particular, the above analysis
automatically gives a proof that tr (ABA™!) = tr(B).

But why is the stronger statement tr(AB) = tr(BA) true? Well, let's compute both of
them.

tr (A ®vz) o (M ® 1))
=tr (A (v1)(A1,v2))
= Xa(v1) A1 (v2)

On the other hand:

tr (A ®vi) o (A ®vy))
=tr (A1 (v2) (A2, v1))
= A (v2) Ao (1)
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