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Q1: The downward bias of entropy – near-worst-case scenario 
 
Consider estimating the entropy of a binary variable, whose distribution is defined by p , where  p  is the 
probability of drawing a 0, and 1 p  is the probability of drawing a 1.  The true entropy is given by 

( ) log (1 ) log(1 )H p p p p p    .  What is the expected value of the naïve (“plug-in”) estimate of entropy, 
based estimating  p  from two samples?  From 3 samples? Compare to ( )H p . 
 
Two samples: With two samples, there are only four possible sets of observations: {0,0}, {0,1}, {1.0}, and 
{1,1}, with probabilities given, respectively, by 2p , (1 )p p  , (1 )p p   , and 2(1 )p . With either the first or 
the last draw, the experimental estimate of p  is either 0 or 1, leading to a naïve estimate of entropy of 0.  With 
the other two draws, the experimental estimate of p  is 1/ 2 , so the plug-in estimate of the entropy (using 2log ) 
is 1.  So the expected value of the plug-in estimate is  2 ( ) (1 ) (1 ) 2 (1 )E p p p p p p p      . 
 
Three samples: Three draws of the same token occur with probability 3 3(1 )p p  ; the other draws, in which 
one symbol is drawn once and the other symbol is drawn twice, occur with total probability 

 2 23 (1 ) 3 (1 ) 3 (1 ) (1 ) 3 (1 )p p p p p p p p p p         .  In the latter case, the experimental estimate of 
p  is 1/ 3  and of (1 )p  is 2 / 3 , or vice-versa, so 
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                      

. 

 
All are symmetric about their maxima at 1/ 2p   and are concave down, and are zero at the extremes, they 
differ substantially.  Plotted via this matlab script below: 
p=[0.001:0.001:.999];e2=2*p.*(1-p);e3=p.*(1-p)*log2(27/4);h=-p.*log2(p)-(1-p).*log2(1-p); 
plot(p,[e2;e3;h],'LineWidth',2);legend('E_2(p)','E_3(p)','H(p)');xlabel('p'); 

 
 
Q2. Differential entropy of a multivariate Gaussian 
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Recall that the multivariate Gaussian distribution for a variable x  (a column vector of length n ) with mean 

zero and covariance matrix Tx x V
 

  is given by 
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For second term, note that, since  1Tx V x   is a scalar,    1 1 1T T Tx V x tr x V x tr V xx   

     . The expected value 

of Txx  is the covariance matrix V . So 
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B. Use this result to show that if  x  is a column vector of length Xn  drawn from a Gaussian with mean zero 

and covariance matrix T
Xx x V

 

 , with differential entropy XH , and  y  is a column vector of length Yn  

drawn independently from a Gaussian with mean zero and covariance matrix T
Yy y V
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 , with differential 

entropy YH  then the joint distribution of  x and  y  has  differential entropy ,X Y X YH H H  . 
 

Since x and  y  are independent, the covariance matrix of 
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determinant is ,det det detX Y X YV V V .  And clearly ,X Y X Yn n n  .  So 
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