Information Theory and Data Analysis

Homework #2 (2024-2025), Answers

Q1: Correlations implied by maximum-entropy

Consider three variables, x_1 , x_2 , and x_3 , with mean zero and unit variance, and with correlations $\langle x_1 x_2 \rangle = a$ and $\langle x_2 x_3 \rangle = b$. In the maximum-entropy distribution that satisfies these constraints, what is $c = \langle x_1 x_3 \rangle$?

The maximum-entropy distribution (notes, and last week's homework) is of the form

 $p_V(\vec{x}) = \frac{1}{(2\pi)^{n/2} \sqrt{\det V}} \exp\left(-\frac{\vec{x}^T V^{-1} \vec{x}}{2}\right), \text{ where the nonzero elements of } V^{-1} \text{ correspond to the constraints on}$

the variances and covariances. That is, V^{-1} is a symmetric matrix of the form $\begin{pmatrix} * & * & 0 \\ * & * & * \\ 0 & * & * \end{pmatrix}$, with the nonzero

elements chosen to satisfy the constraints. Say $V = \begin{pmatrix} 1 & a & c \\ a & 1 & b \\ c & b & 1 \end{pmatrix}$. Calculating the inverse of V using minors, the

upper right element of V^{-1} -- which must be zero since $\langle x_1 x_3 \rangle$ is unconstrained -- is given by $\det \begin{pmatrix} a & 1 \\ c & b \end{pmatrix} / \det V$. So $\det \begin{pmatrix} a & 1 \\ c & b \end{pmatrix} = 0$, i.e., ab - c = 0 and c = ab.