
Linear Systems: Black Boxes and Beyond, 1 of 3 

Linear Systems: Black Boxes and Beyond 
 
Homework #2 (2024-2025), Questions 
 
Q1. Multi-input, multi-output systems and coherence 
 
Consider a linear system L  with m  inputs and n  outputs.  It can be characterized by an array of impulse 
responses, ( )mnL  , which specify the response of the n th output to an impulse on the m th input, or, 

equivalently, an array of transfer functions 
0

ˆ ( ) ( )i t
mn mnL e L t dt


   that specify the sinusoidal component at   

on the n th output produced by a unit sinusoid on the m th input. We can also denote the array of transfer 
functions by ˆ( )L  .  

 
A. Given two such systems in series, say A  with  m  inputs and n  outputs and transfer functions ˆ ( )nmA  , 

and B , which takes these n  outputs as its input and produces p  outputs, with transfer functions 
ˆ ( )pnB  , what are the transfer functions ( )pmL   of the composite system consisting of A  followed by 
B ? 

 
B. For systems with the same number of inputs and outputs (i.e., m n p   above), does the order of 

composition matter? 
 

C. With A  as above ( m  inputs, n  outputs, transfer functions ˆ ( )nmA  ): How does the cross-spectral matrix 
of the output , ( )

j kY YP   relate to the cross-spectral matrix of the input, , ( )
j kX XP  ? What if the inputs 

consist of independent Gaussian noises with unit spectral density? 
 

D. Consider two m -input, m -output systems, A  and B .  For what conditions on A  are the cross-spectral 
matrices of B , and of L , consisting of A  followed by B , identical? 
 

 
 
Q2. Hermite polynomials and generating functions 
 
Hermite polynomials – orthogonal polynomials with respect to a Gaussian -- play a major role in extending 
input-output analysis to nonlinear systems.  This is because of both the Central Limit Theorem and Price’s 
Theorem (see Question 3). Question 4  illustrates this extension, and can be done without first doing Q2 and Q3.   
 
First, we establish the orthogonality of Hermite polynomials and then prove Price’s Theorem using generating 
functions.  If you haven’t seen generating functions, they are a good thing to have in your toolkit.  
Demonstrating orthogonality of the Hermite polynomials are the “warm-up exercise.” 

In our standardization, the m th Hermite polynomial ( )mh x  is defined as the coefficient of mt  in 
2

exp( )
2
txt , 

specifically, 
2

0

( ) exp( )
! 2

m

m
m

t th x xt
m





  .  In this standardization, ( )mh x  has a leading coefficient 1.  
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Show that the Hermite polynomials are orthogonal with respect to a unit Gaussian, namely, that 
2 /2 0,1 ( ) ( )

!,2
x

m m

m n
h x h x e dx

m m n






  
 . 

A. With 
2 /2

,
1 ( ) ( )
2

x
m n m nI h x h x e dx








  , express ,
, 0

( , )
! !

m n

m n
m n

s tI s t I
m n





   as an integral of an exponential 

using the generating-function definition of the Hermites. 
 

B. Integrate ( , )I s t  (complete the square in the exponent and use 
2 /21 1

2
xe dx








 ). 

C. Equate the expressions in A and B for ( , )I s t  term-by-term to determine ,m nI . 
 
Q3. Price’s Theorem 
Price’s Theorem states that if two variables are drawn from a correlated Gaussians (say, x  and y , each with 
zero mean and unit variance, and correlation xy ), then, for any Hermite polynomials mh  and nh  (defined 

below), ( ) ( ) 0m nh x h y   if m n , and ( ) ( ) ! m
m mh x h y m  .  This is crucial to extending the cross-

correlation approach to nonlinear systems.  
 
First, we set up correlated unit-variance, zero-mean Gaussian variables. Let u  and v  be UNcorrelated unit-
mean Gaussian variables, and cos sinx u v   , sin cosy u v    (note, not a rotation). 
 

A. Determine 2x , 2y , and xy  

B. We want to calculate , ( ) ( )m n m nJ h x h y .  Rather than integrate over a pair of correlated Gaussians in 
x  and y , we use the underlying uncorrelated Gaussians in u  and v .  So  
 

2 2
2

/2 /2
,

1( ) ( ) ( cos sin ) ( sin cos )
2

u v
m n m n m nJ h x h y h u v h u v e e dudv   



 
 

 

         . 

 

Write the generating function ,
, 0

( , )
! !

m n

m n
m n

s tJ s t J
m n





   using the generating function for the Hermites, 

integrate, and equate term-by-term to demonstrate the claim of Price’s Theorem. 
 

Q4. Application to input-output analysis of nonlinear systems. 
 
Consider a composite system consisting of a linear filter followed by a static nonlinear system. Specifically, the 
linear system L  has an impulse-response ( )L  , that produces a response ( )q t  to an input ( )s t , and is followed 
by a static nonlinear system N  whose response to q  is given by a nonlinear function ( )r N q . That is, the 
response of N  at any given time depends only on its input at that time, and not on previous values of the input.  
 
We analyze the response of this composite system when its input is a Gaussian noise of unit variance. 
 

A. Let V  be the variance of ( )q t  when the input ( )s t  is a unit-variance Gaussian.  Provided that 

 
22 /2( ) q VN q e dq





  is finite, ( )N q  can be expanded in terms of Hermite polynomials as 
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0

( ) k k
k

qN q h
V






     . Using the orthogonality of the Hermite polynomials (Q2), namely, that 

2 /2 0,1 ( ) ( )
!,2

x
m m

m n
h x h x e dx

m m n






  
 , determine k .  Hint: Consider ( )N q  as a vector in a Hilbert 

space with inner product 
2 /21( , ) ( ) ( )

2
q V

Hf g f q g q e dq
V






  .  Then think of projecting it onto the 

one-dimensional subspace spanned by  m
qh
V

    
, using that inner product.  In other words, the k  aree 

the coordinates of  ( )N q  in the basis set consisting of the m
qh
V

    
. 

 
B. Using Price’s theorem (Q3), determine the cross-correlation between a Hermite polynomial function of 

the stimulus and system’s response, i.e.,  ( ) ( ) ( )n nZ r t h s t   . 
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