
Linear Transformations and Group Representations 
  
Homework #1 (2024-2025), Answers 
 
Q1: Characteristic equations, eigenvalues, eigenvectors 
For each of the following: write the characteristic equation, find the eigenvalues, and find the eigenvectors.  
Determine if the operator is “normal” (i.e., commutes with its adjoint).  

A. 
0 1
0 0

A
     

.   

Characteristic equation is  det 0zI A  , i.e., 
1

det 0
0
z

z
      

, i.e., 2 0z  .  Only possible eigenvalue 

is therefore 0 .  1 2

2 0
v v

Av A
v
               

. So if 1

2

v
v

v
     

 has eigenvalue 0, then 2 0v  , i.e,. the only 

eigenvector is 1

0
v     

, which does have eigenvalue 0.  A  is not normal, as * 0 1 0 0 1 0
0 0 1 0 0 0

AA
                         

 

but * 0 0 0 1 0 0
1 0 0 0 0 1

A A
                         

. A  does not have a full set of eigenvectors. 

B. 
1 1
0 0

B
      

. 

Characteristic equation is  det 0zI B  , i.e., 
1 1

det 0
0

z
z

      
, i.e., ( 1) 0z z  .  Possible 

eigenvalues are therefore 0 and 1. 1 1 2

2 0
v v v

Bv B
v
               

. So if 1

2

v
v

v
     

 has eigenvalue 0, then 1 2v v , 

so one eigenvector is 1

1

v
v
     

, which does have eigenvalue 0. If 1

2

v
v

v
     

 has eigenvalue 1, then 1 1 2v v v  , 

which implies 2 0v  . 1

0
v     

 does have eigenvalue 1. B  is not normal: * 1 1 1 0 2 0
0 0 1 0 0 0

BB
                          

 

but  
* 1 0 1 1 1 0

1 0 0 0 0 1
B B

                         
. B  has a full set of eigenvectors but they are not orthogonal. 

C. 
1 0
0 0

C
     

. 

Characteristic equation is  det 0zI C  , i.e., 
1 0

det 0
0

z
z

      
, i.e., ( 1) 0z z  .  Possible 

eigenvalues are therefore 0 and 1. 1 1

2 0
v v

Cv C
v
               

. So if 1

2

v
v

v
     

 has eigenvalue 0, then 1 0v  , so 

one eigenvector is 
2

0
v
     

, which does have eigenvalue 0. If 1

2

v
v

v
     

 has eigenvalue 1, then 2 0v  . 1

0
v     

 

does have eigenvalue 1. C  is normal, as *C C ;  C ’s eigenvectors form an orthogonal basis. 

D. 
0 1
1 0

D
     

. 



Characteristic equation is  det 0zI D  , i.e., 
1

det 0
1
z

z
      

, i.e., 2 1 0z   .  Possible eigenvalues 

are therefore i .  1 2

2 1

v v
Dv D

v v
               

. So if 1

2

v
v

v
     

 has eigenvalue i , i.e., 2 1

1 2

v v
i

v v
              

then 2 1v iv  

and 1 2v iv  , so one eigenvector is 1

1

v
iv
     

, which does have eigenvalue i . Similarly, 1

1

v
iv

     
 has 

eigenvalue i .  Note that 1

1

v
iv
     

 and 1

1

v
iv

     
 are orthogonal.   D  is normal, as *D D ;  D ’s 

eigenvectors form an orthogonal basis. 
 

 
Q2: Tensor Products and Traces (similar to LTGR2223aHW, Q1) 
 
Given a linear transformation A  on a vector space V  of dimension n , and a complete set of eigenvectors iv  
and corresponding eigenvalues i : 
A. What are the eigenvectors and eigenvalues of A A ? 
We can build 2n  distinct eigenvectors from elementary tensor products of the eigenvectors iv  in V :  
 ( ) ( ) ( ) ( ) ( ) ( )( )i j i j i i j j i j i jA A v v Av Av v v v v          . Since 2n  is the dimension of A A , this is 
all of the eigenvectors.  The eigenvalues are i j  (note that i j  and j i   are counted separately, since i jv v  
and j iv v  are distinct. 
 
B.  What are the eigenvectors and eigenvalues of ( )sym A A , the restriction of A A  to the symmetric 
part of V V ? 
A basis for ( )sym V V  are the symmetrized tensor products i j j iv v v v    ( i j ) and i iv v . These are all 

eigenvectors, with eigenvalues i j   ( j i   not counted separately) and 2
i .  

 
C. What are the eigenvectors and eigenvalues of ( )anti A A , the restriction of A A  to the antisymmetric 
part of V V ? 
A basis for ( )anti V V  are the antisymmetrized tensor products i j j iv v v v    ( i j ). These are all 
eigenvectors, with eigenvalues i j  i j . 
 
D. What is  tr A A ,  ( )tr sym A A , and  ( )tr anti A A , in terms of ( )tr A  and 2( )tr A ? 
Since the trace is the sum of the eigenvalues: 

   
2

2

1 1 1

n n n

i j i
i j i

tr A A trA 
  

         . 

For  ( )tr sym A A : From part B,   2

1

( )
n n

i j i
i j i

tr sym A A  
 

    . Writing it in a more symmetric form: 

 

2 2 2

1 1 1

22 2 2

1 1 1 1 1 1 1

1 1 1
2 2 2

1 1 1 1 1 1
2 2 2 2 2 2

n n n n n

i j i i j i i
i j i i j i i

n n n n n n n

i j i i i i i
i j i i i i i

trA

    

     

    

      

   

                        

    

     
 



So we need 2

1

n

i
i



 .  This is the sum of the eigenvalues of 2A .  So        2 21 1

2 2
tr sym A A trA trA   . 

For  ( )tr anti A A : From part C,     2

1

( ) ( )
n n

i j i
i j i

tr anti A A tr sym A A 
 

      . So 

      2 21 1
2 2

tr anti A A trA trA   . 

 
Q3: Projections (similar to LTGR2223bHW, Q1) 
 
Given projections P  and Q  on a vector space V :  

A. Show that if P  and Q  commute, that PQ   is also a projection.  What is a geometric interpretation? 

We need to show that PQ  is self-adjoint and that  2PQ PQ .  
For the adjoint property: 

* * *( )PQ Q P QP PQ   . (Adjoint of product is product of adjoints in reverse order; P  and Q  each self-
adjoint since they are projections; P  and Q  commute.) 
For idempotency: 
 2 2 2PQ PQPQ P Q PQ   .  (Carrying out the multiplication; P  and Q  commute; P  and Q  are each 
idempotent since they are projections.) 
 
The geometric interpretation is that PQ  is a projection onto the subspace that is the intersection of the range of 
P  and the range of Q .  Note that 2( )P PQ P Q PQ  , so the range of PQ  is in the range of P , and 

2( )Q PQ QPQ PQ PQ    so the range of PQ  is also in the range of Q . 
 

B. Show that if P  and Q  are projections but do not commute, then PQ   is not a projection. 
 

We will show that PQ  is not self-adjoint.  If it were, then ( )PQ PQ  , which implies that PQ Q P   (adjoint 
of product is product of adjoints in reverse order), which implies that PQ QP , since  P  and Q  are 
projections, implying that (contrary to the hypothesis) that  P  and Q  commute. 
 

C.  If P  and Q  commute, is P Q  a projection?  If not, give a condition on P  and Q  that guarantees 
that it is a projection. What is a geometric interpretation? 

 
Not typically.  Take P Q .  Then  22 2( ) 2 4 4 ( )P Q P P P P Q      . 

P Q  is self-adjoint ( )P Q P Q P Q       .  So what we need is that 2( )P Q P Q   . 
2 2 2( ) ( )( ) 2P Q P Q P Q P PQ QP Q P PQ QP Q P PQ Q               , using idempotency for 

P  and Q , and (last step) that  P  and Q  commute. 
So, if 2( )P Q P Q   , then we must have 0PQ  .  Conversely, if  P  and Q  are projections with 

0PQ QP  , then P Q  is a projection. Geometrically, P Q  is a projection onto the linear span of the 
range of  P  and the range of Q . 

 
D. If P  and Q  commute, is P Q PQ   a projection? What is a geometric interpretation? 

Consider  ( )R I P Q PQ    . Note that ( )( )R I P I Q   .  If P  and Q  are projections, then so are I P  
and I Q .  They commute.  By part B, this implies that R  is a projection.  If R  is a projection, then so is 
I R P Q PQ    .  



Geometry: P Q PQ   is a projection onto the linear span of P  and Q : 
  2 2P Q PQ P P QP PQP P QP QP P          and similarly  P Q PQ Q Q   , so any vector in 
the range of either P  and Q  is in the range of P Q PQ  . 
 
Parts B and D, along with the complementary projection I P , yield a correspondence between Boolean logic 
(and, or, not) and algebraic operations among a system of commuting projections. 
 
Q4: Inner products in a tensor-product space 
 
Here we show how inner products on a pair of vector spaces can be extended to their tensor product, filling 
some gaps in the notes. Say the v  are vectors in a Hilbert space V  with inner product ,

V
v v  and similarly the 

w  are vectors in a Hilbert space W  with inner product ,
W

w w .   
 

A. Give a natural definition for an inner product ,
V W

 on vectors in V W . Show self-consistency. 
 

Put , , ,
V W V W

v w v w v v w w


       and extend by linearity to sums of elementary tensor products. 
 
Self-consistency: we need , ,

V W V W
v w v w v w v w 

 
        , since v w   and v w  are the 

same elements of V W . (We also need  , ,
V W V W

v w v w v w v w 
 

         but the demonstration 
is parallel.)  

, , , , ,
V W V W V W

v w v w v v w w v v w w  


          (definition of ,
V W

, linearity of ,
V

) 
But similarly,  

, , , , ,
V W V W V W

v w v w v v w w v v w w  


          (definition of ,
V W

, linearity of ,
W

) 
 
 

B. Show that the properties of an inner product (linearity, conjugate symmetry, and positive-definiteness) 
hold. 

We need linearity of scalar multiplication and addition.  For scalar multiplication: 
 , ,

V WV W
v w v w v w v w 


        . To show this: 

 , ,
V WV W

v w v w v w v w 


         (scalar multiplication of an elementary tensor product) 

, , ,
V W V W

v w v w v v w w 


       (definition of ,
V W

) 

, , , ,
V W V W

v v w w v v w w      (linearity of ,
V

) 

, , ,
V W V W

v v w w v w v w 


       (definition of ,
V W

) 
 

   1 1 2 2 1 1 2 2, , ,
V W V WV W

a v w b v w v w a v w v w b v w v w
 

               . 

For addition, linearity follows because the inner product is extended by linearity from elementary tensor 
products.  
 
Conjugate symmetry, , ,

V W V W
v w v w v w v w

 
         

First, 
, , , , , , , ,

V W V W V W V W V W
v w v w v v w w v v w w v v w w v w v w

 
                  



 (definition of ,
V W

; conjugate symmetry for ,
V

 and ,
W

; properties of complex-conjugation; 

definition ,
V W

) 
 

Positive definiteness: 
Say the  iv  are an orthonormal basis for V  and the  jw  are an orthonormal basis for W .  Then  i jv w  

are an orthonormal basis for V W .  That is, , ,i j k l i k j lVV W W
v w v w v v w w


    , which is 0 unless 

i k  and j l .  
 
So for any  ,

,
i j i j

i j

v w  , 

 

   , ,
, ,

, ,
, , ,

2

, , ,
, ,

, ,

,

i j i j k l i jV W
i j k l V W

i j k l i j k l V W
i j k l

i j i j i j
i j i j

v w v w

v w v w

 

 

  






    

  

 

 



 

 

which can never be negative and is zero only if all , 0i j  . 
 

C. What is the adjoint of A B ? 
 
By definition, the adjoint of A B  is the operator  A B 

  that satisfies  

     ( ), ,
V W V W

A B v w v w v w A B v w

 
          . 

So we calculate: 
 ( ), , , ,

V W V WV W
A B v w v w Av Bw v w Av v Bw w


             (how A B  acts in V W , then 

definition of ,
V W

) 
Then  

  , , , , , ,
V W V W V W V W

Av v Bw w v A v w B w v w A v B w v w A B v w     

 
                

(definition of adjoint in V  and in W , then definition of ,
V W

; how A B   acts in V W ) 
 
Comparing both ends:  A B A B     . 
 

D. Now that we know how to define adjoints: Given P  a projection in V  and Q  a projection in W , is 
P Q  a projection in V W ? 
 
P Q  is self-adjoint:  P Q P Q P Q       , since P  and Q  are self-adjoint. 

P Q  is idempotent:    2 2P Q P Q P Q P Q      , since P  and Q  are idempotent. 
 
Q5: The dihedral group Dn and some of its representations. 



The dihedral group nD  consists of the rotations and reflections of a regular n -gon.  This group is generated by 

a rotation R  of 2
n
  and by a mirror M . The other mirror reflections are aR M  ( 1,..., 1a n  ), and the 

identity. The group properties can all be derived from the relationships 2nR M I   (i.e., R  is of order n  and 
M  is of order 2), and 1nMR R M  (a rotation followed by a mirror is the same as a mirror followed by a 
rotation in the opposite direction), without regard to a geometrical interpretation for R  and M .  It is a bit 
fussy -- even and odd values of n  behave differently -- , but it is also a chance to work with groups via thee 
abstract relationships between their generators (here, R  and M ) – and to appreciate how useful it is to have a 
geometric interpretation.  
 

A. Determine whether all mirror reflections are in the same conjugate class as M .  Since the group 
elements are I ,  aR  ( 1,..., 1a n  ), and aR M  ( 1,..., 1a n  ), it suffices to determine 1gMg  for 
each of these (other than the identity). 

 
1gMg  for ag R :   11 a a a n agMg R M R R MR

   .  Applying 1nMR R M  to n aMR   (i.e., applying it 
n a  times, each time moving one copy of R  to the left across M ) yields 

1 1 2( 1) 2 ( 1)( ) ( 1)...n a n n a n n a n n a n a aMR R MR R MR R M R M R M                 (*). 
So      1 2a a a n a a a aR M R R MR R R M R M

    . 
1gMg  for ag R M : Same as for ag R , since   1 1( )a a a a a aR MM R M R R M R MR

    . 
 
So, conjugation of M  by any group element can yield 2aR M , for any integer a .  If n  is odd, this yields all 
of the mirrors bR M , as, for any integer b , 2 (mod )n a b n   always has an integer solution a .  These are 
the mirrors that pass through any vertex and the midpoint of the opposite side.  
 
But for n  even, 2 (mod )n a b n   only has an integer solution a  when b  is even.  That is, M  is 
conjugate to 2R M , 4R M , … The other mirrors RM , 3R M , … are conjugate to each other but not to the 
first set of mirrors.  These two sets correspond to the mirrors through a pair of opposite vertices, and the 
mirrors through a pair of midpoints of opposite sides. 

 
B. Determine the conjugate classes of the rotations.  As in A, Since the group elements are I ,  aR  

( 1,..., 1a n  ), and aR M  ( 1,..., 1a n  ), it suffices to determine 1kgR g  for each of these. 
 
For ag R , 1k agR g R   since R  commutes with powers of itself. 

For ag R M ,     11k a k agR g R M R R M
  .  From part A (*), we had n a aMR R M  , so 

       
 

1 11k a k a n a k n a

n a k a k

gR g R M R R M MR R MR

MR R M MR M

   

 

 

 
.Using part A (*) again, but as n k kMR R M  , 

yields  1k k n k n k kgR g MR M M MR R R       . 
 
So each rotation kR  is conjugate to kR , i.e., they are conjugate in pairs except that for n  even, /2nR  is 
only conjugate to itself. 
 

C. Write out the conjugate classes for nD .  
 



Collecting the results from A and B: 
For n  odd: 
• the identity (one element) 
• one class containing the mirrors ( n  elements) 

• 
2
n  classes each containing two rotations  ,k kR R , {1,2,..., ( 1) / 2}k n   

For n  even 
• the identity (one element) 

•  one class of the “even” mirrors (
2
n  elements,  2 2, ,..., nM R M R M ) 

• one class of the “odd” mirrors containing   (
2
n  elements,  3 1, ,..., nRM R M R M ) 

• 1
2
n
  classes each containing two rotations  ,k kR R , {1,2,..., / 2 1}k n   

• One class containing the rotation by  ,  /2nR . 
 

D. For definiteness, say that the n -gon has one vertex pointing up, and M  is a reflection across the 
vertical axis. Consider elements of nD  as motions in the plane, and the corresponding 2-dimensional 
representation, say L ,  What is ( )L R ? What is ( )L M ?Can you construct other representations in a 
similar way? 

 

For R , this is a rotation by 2
n
 , so the corresponding matrix is 

2 2cos sin

2 2sin cos

n n

n n

 

 

          

 and 2( ) 2cosL R
n


  , its 

trace. 

For M , the matrix is 
1 0

0 1
      

and ( ) 0L M  , its trace. 

 
To construct other similar representations, we only require that the generator relationships 2nR M I   and 

1nMR R M  hold for the matrices. We could have equally taken 

2 2cos sin

2 2sin cos

b b
n n

b b
n n

 

 

          

for the matrix 

corresponding to R , yielding distinct (but similar) representations for values of 2,..., ( 1) / 2b n    . 
 
 

E. Consider elements of nD   as permutations on the n  edges and the corresponding n -dimensional 
representation, say E . What is ( )E R ? What is ( )E M ?  

For R : R  is a cyclic permutation of the  n  edges, moving each edge to a different edge.  As a permutation 
matrix, there are no 1’s on the diagonal. So ( ) 0E R  .  
For M : If n  is odd, one edge always crosses the mirror. ( ) 1E M  .  If n  is even, no edges cross the mirror, 
so ( ) 0E M   

 
F. As in E, but consider  nD   as permutations on the n  vertices.  



For n  odd, the outcome is the same.  But for n  even, M  leaves two vertices unchanged, so ( ) 2V M   
 

G. There is a one-dimensional representation U  that maps each ng D  to the parity of the permutation on 
the edges corresponding to g .  What is ( )U R ? What is ( )U M ? 

 
n  odd: R  is a cyclic permutation of the  n  edges, so, if n  is odd, this is an even permutation, and ( ) 1U R  .  
M  swaps ( 1) / 2n  pairs of edges, leaving the edge opposite the top vertex unchanged, so, if  ( 1) / 2n  is odd 
(i.e., 3,7,11,...n  ), then ( ) 1U M   and otherwise (i.e., 5,9,13,...n  ) ( ) 1U M  . 
 
n  even: R  is a cyclic permutation of the  n  edges, so, if n  is even, this is an odd permutation, and 

( ) 1U R  .  M  swaps 
2
n  pairs of edges, so, if  / 2n  is odd (i.e., 6,10,14,...n  ), then ( ) 1U M   and 

otherwise  (i.e., 4,8,12,...n  ), ( ) 1U M  . 
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	Q1: Characteristic equations, eigenvalues, eigenvectors
	For each of the following: write the characteristic equation, find the eigenvalues, and find the eigenvectors.  Determine if the operator is “normal” (i.e., commutes with its adjoint).
	A. .
	Characteristic equation is , i.e., , i.e., .  Only possible eigenvalue is therefore .  . So if  has eigenvalue 0, then , i.e,. the only eigenvector is , which does have eigenvalue 0.   is not normal, as  but .
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	For the adjoint property:
	. (Adjoint of product is product of adjoints in reverse order;  and  each self-adjoint since they are projections;  and  commute.)
	For idempotency:
	.  (Carrying out the multiplication;  and  commute;  and  are each idempotent since they are projections.)
	The geometric interpretation is that  is a projection onto the subspace that is the intersection of the range of  and the range of .  Note that , so the range of  is in the range of , and  so the range of  is also in the range of .
	B. Show that if  and  are projections but do not commute, then   is not a projection.
	We will show that  is not self-adjoint.  If it were, then , which implies that  (adjoint of product is product of adjoints in reverse order), which implies that , since   and  are projections, implying that (contrary to the hypothesis) that   and  com...
	C.  If  and  commute, is  a projection?  If not, give a condition on  and  that guarantees that it is a projection. What is a geometric interpretation?
	Not typically.  Take .  Then .
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	Q4: Inner products in a tensor-product space
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	(definition of , linearity of )
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	. To show this:
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	(linearity of )
	(definition of )
	.
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	First,
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	Positive definiteness:
	Say the  are an orthonormal basis for  and the  are an orthonormal basis for .  Then  are an orthonormal basis for .  That is, , which is 0 unless  and .
	So for any ,
	which can never be negative and is zero only if all .
	C. What is the adjoint of ?
	By definition, the adjoint of  is the operator  that satisfies
	.
	So we calculate:
	(how  acts in , then definition of )
	Then
	(definition of adjoint in  and in , then definition of ; how  acts in )
	Comparing both ends: .
	D. Now that we know how to define adjoints: Given  a projection in  and  a projection in , is  a projection in ?
	is self-adjoint: , since  and  are self-adjoint.
	is idempotent: , since  and  are idempotent.
	Q5: The dihedral group Dn and some of its representations.
	The dihedral group  consists of the rotations and reflections of a regular -gon.  This group is generated by a rotation  of  and by a mirror . The other mirror reflections are  (), and the identity. The group properties can all be derived from the rel...
	A. Determine whether all mirror reflections are in the same conjugate class as .  Since the group elements are ,   (), and  (), it suffices to determine  for each of these (other than the identity).
	for : .  Applying  to  (i.e., applying it  times, each time moving one copy of  to the left across ) yields  (*).
	So .
	for : Same as for , since .
	So, conjugation of  by any group element can yield , for any integer .  If  is odd, this yields all of the mirrors , as, for any integer ,  always has an integer solution .  These are the mirrors that pass through any vertex and the midpoint of the op...
	But for  even,  only has an integer solution  when  is even.  That is,  is conjugate to , , … The other mirrors , , … are conjugate to each other but not to the first set of mirrors.  These two sets correspond to the mirrors through a pair of opposite...
	B. Determine the conjugate classes of the rotations.  As in A, Since the group elements are ,   (), and  (), it suffices to determine  for each of these.
	For ,  since  commutes with powers of itself.
	For , .  From part A (*), we had , so .Using part A (*) again, but as , yields .
	So each rotation  is conjugate to , i.e., they are conjugate in pairs except that for  even,  is only conjugate to itself.
	C. Write out the conjugate classes for .
	Collecting the results from A and B:
	For  odd:
	 the identity (one element)
	 one class containing the mirrors ( elements)
	  classes each containing two rotations ,
	For  even
	 the identity (one element)
	  one class of the “even” mirrors ( elements, )
	 one class of the “odd” mirrors containing   ( elements, )
	  classes each containing two rotations ,
	 One class containing the rotation by , .
	D. For definiteness, say that the -gon has one vertex pointing up, and  is a reflection across the vertical axis. Consider elements of  as motions in the plane, and the corresponding 2-dimensional representation, say ,  What is ? What is ?Can you cons...
	For , this is a rotation by , so the corresponding matrix is  and , its trace.
	For , the matrix is and , its trace.
	To construct other similar representations, we only require that the generator relationships  and  hold for the matrices. We could have equally taken for the matrix corresponding to , yielding distinct (but similar) representations for values of .
	E. Consider elements of   as permutations on the  edges and the corresponding -dimensional representation, say . What is ? What is ?
	For :  is a cyclic permutation of the   edges, moving each edge to a different edge.  As a permutation matrix, there are no 1’s on the diagonal. So .
	For : If  is odd, one edge always crosses the mirror. .  If  is even, no edges cross the mirror, so
	G. There is a one-dimensional representation  that maps each  to the parity of the permutation on the edges corresponding to .  What is ? What is ?
	odd:  is a cyclic permutation of the   edges, so, if  is odd, this is an even permutation, and .   swaps  pairs of edges, leaving the edge opposite the top vertex unchanged, so, if   is odd (i.e., ), then  and otherwise (i.e., ) .
	even:  is a cyclic permutation of the   edges, so, if  is even, this is an odd permutation, and .   swaps  pairs of edges, so, if   is odd (i.e., ), then  and otherwise  (i.e., ), .

