
Linear Transformations and Group Representations 
  
Homework #1 (2024-2025), Questions 
 
Q1: Characteristic equations, eigenvalues, eigenvectors 
 
For each of the following: write the characteristic equation, find the eigenvalues, and find the eigenvectors.  
Determine if the operator is “normal” (i.e., commutes with its adjoint).  

A. 
0 1
0 0
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0 0
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0 1
1 0
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Q2: Tensor Products and Traces (similar to LTGR2223aHW, Q1) 
 
Given a linear transformation A  on a vector space V  of dimension n , and a complete set of eigenvectors iv  
and corresponding eigenvalues i : 
A. What are the eigenvectors and eigenvalues of A A ? 
B. What are the eigenvectors and eigenvalues of ( )sym A A , the restriction of A A  to the symmetric 
part of V V ? 
C. What are the eigenvectors and eigenvalues of ( )anti A A , the restriction of A A  to the antisymmetric 
part of V V ? 
D. What is  tr A A ,  ( )tr sym A A , and  ( )tr anti A A , in terms of ( )tr A  and 2( )tr A ? 
 
Q3: Projections (similar to LTGR2223bHW, Q1) 
 
Given projections P  and Q  on a vector space V :  

A. Show that if P  and Q  commute, that PQ   is also a projection.  What is a geometric interpretation? 
 

B. Show that if P  and Q  are projections but do not commute, then PQ   is not a projection. 
 

C. If P  and Q  commute, is P Q  a projection?  If not, give a condition on P  and Q  that guarantees that 
it is a projection. What is a geometric interpretation? 
 

D. If P  and Q  commute, is P Q PQ   a projection? What is a geometric interpretation? 



 
 
Q4: Inner products in a tensor-product space 
 
Here we show how inner products on a pair of vector spaces can be extended to their tensor product, filling 
some gaps in the notes. Say the v  are vectors in a Hilbert space V  with inner product ,

V
v v  and similarly the 

w  are vectors in a Hilbert space W  with inner product ,
W

w w .   
 

A. Give a natural definition for an inner product ,
V W

 on vectors in V W . Show self-consistency. 
 

B. Show that the properties of an inner product (linearity, conjugate symmetry, and positive-definiteness) 
hold. 

C. What is the adjoint of A B ? 
 

D. Now that we know how to define adjoints: Given P  a projection in V  and Q  a projection in W , is 
P Q  a projection in V W ? 

 
Q5: The dihedral group Dn and some of its representations 
The dihedral group nD  consists of the rotations and reflections of a regular n -gon.  This group is generated by 

a rotation R  of 2
n
  and by a mirror M . The other mirror reflections are aR M  ( 1,..., 1a n  ), and the 

identity. The group properties can all be derived from the relationships 2nR M I   (i.e., R  is of order n  and 
M  is of order 2), and 1nMR R M  (a rotation followed by a mirror is the same as a mirror followed by a 
rotation in the opposite direction), without regard to a geometrical interpretation for R  and M .  It is a bit fussy 
-- even and odd values of n  behave differently -- , but it is also a chance to work with groups via the abstract 
relationships between their generators (here, R  and M ) – and to appreciate how useful it is to have a geometric 
interpretation.  
 

A. Determine whether all mirror reflections are in the same conjugate class as M .  Since the group 
elements are I ,  aR  ( 1,..., 1a n  ), and aR M  ( 1,..., 1a n  ), it suffices to determine 1gMg  for 
each of these (other than the identity). 

 
B. Determine the conjugate classes of the rotations.  

 
C. Write out the conjugate classes for nD .  

 
D. For definiteness, say that the n -gon has one vertex pointing up, and M  is a reflection across the 

vertical axis. Consider elements of nD  as motions in the plane, and the corresponding 2-dimensional 
representation, say L ,  What is ( )L R ? What is ( )L M ?Can you construct other representations in a 
similar way? 

E. Consider elements of nD   as permutations on the n  edges and the corresponding n -dimensional 
representation, say E . What is ( )E R ? What is ( )E M ?  

F. As in E, but consider  nD   as permutations on the n  vertices.  
 

G. There is a one-dimensional representation U  that maps each ng D  to the parity of the permutation on 
the edges corresponding to g .  What is ( )U R ? What is ( )U M ? 
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