Linear Transformations and Group Representations

Homework #1 (2024-2025), Questions

Q1: Characteristic equations, eigenvalues, eigenvectors

For each of the following: write the characteristic equation, find the eigenvalues, and find the eigenvectors. Determine if the operator is "normal" (i.e., commutes with its adjoint).

A. $A = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$. B. $B = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$. C. $C = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. D. $D = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Q2: Tensor Products and Traces (similar to LTGR2223aHW, Q1)

Given a linear transformation A on a vector space V of dimension n, and a complete set of eigenvectors v_i and corresponding eigenvalues λ_i :

A. What are the eigenvectors and eigenvalues of $A \otimes A$?

B. What are the eigenvectors and eigenvalues of $sym(A \otimes A)$, the restriction of $A \otimes A$ to the symmetric part of $V \otimes V$?

C. What are the eigenvectors and eigenvalues of $anti(A \otimes A)$, the restriction of $A \otimes A$ to the antisymmetric part of $V \otimes V$?

D. What is $tr(A \otimes A)$, $tr(sym(A \otimes A))$, and $tr(anti(A \otimes A))$, in terms of tr(A) and $tr(A^2)$?

Q3: Projections (similar to LTGR2223bHW, Q1)

Given projections P and Q on a vector space V:

- A. Show that if P and Q commute, that PQ is also a projection. What is a geometric interpretation?
- B. Show that if P and Q are projections but do not commute, then PQ is not a projection.
- C. If P and Q commute, is P+Q a projection? If not, give a condition on P and Q that guarantees that it is a projection. What is a geometric interpretation?
- D. If P and Q commute, is P+Q-PQ a projection? What is a geometric interpretation?

Q4: Inner products in a tensor-product space

Here we show how inner products on a pair of vector spaces can be extended to their tensor product, filling some gaps in the notes. Say the v are vectors in a Hilbert space V with inner product $\langle v, v' \rangle_{V}$ and similarly the w are vectors in a Hilbert space W with inner product $\langle w, w' \rangle_{W}$.

- A. Give a natural definition for an inner product $\langle , \rangle_{_{V\otimes W}}$ on vectors in $_{V\otimes W}$. Show self-consistency.
- B. Show that the properties of an inner product (linearity, conjugate symmetry, and positive-definiteness) hold.
- C. What is the adjoint of $A \otimes B$?
- D. Now that we know how to define adjoints: Given P a projection in V and Q a projection in W, is $P \otimes Q$ a projection in $V \otimes W$?

Q5: The dihedral group Dn and some of its representations

The dihedral group D_n consists of the rotations and reflections of a regular *n*-gon. This group is generated by a rotation *R* of $\frac{2\pi}{n}$ and by a mirror *M*. The other mirror reflections are R^aM (a = 1, ..., n-1), and the identity. The group properties can all be derived from the relationships $R^n = M^2 = I$ (i.e., *R* is of order *n* and *M* is of order 2), and $MR = R^{n-1}M$ (a rotation followed by a mirror is the same as a mirror followed by a rotation in the opposite direction), without regard to a geometrical interpretation for *R* and *M*. It is a bit fussy

-- even and odd values of n behave differently -- , but it is also a chance to work with groups via the abstract relationships between their generators (here, R and M) – and to appreciate how useful it is to have a geometric interpretation.

- A. Determine whether all mirror reflections are in the same conjugate class as M. Since the group elements are I, R^a (a = 1, ..., n-1), and $R^a M$ (a = 1, ..., n-1), it suffices to determine gMg^{-1} for each of these (other than the identity).
- B. Determine the conjugate classes of the rotations.
- C. Write out the conjugate classes for D_n .
- D. For definiteness, say that the *n*-gon has **one vertex pointing up**, and *M* is a reflection across the vertical axis. Consider elements of D_n as motions in the plane, and the corresponding 2-dimensional representation, say *L*, What is $\chi_L(R)$? What is $\chi_L(M)$?Can you construct other representations in a similar way?
- E. Consider elements of D_n as permutations on the *n* edges and the corresponding *n*-dimensional representation, say *E*. What is $\chi_E(R)$? What is $\chi_E(M)$?
- F. As in E, but consider D_n as permutations on the *n* vertices.
- G. There is a one-dimensional representation U that maps each $g \in D_n$ to the parity of the permutation on the edges corresponding to g. What is $\chi_U(R)$? What is $\chi_U(M)$?