Multivariate Analysis

Homework #2 (2024-2025), Questions

These problems examine the performance of ICA variants in several illustrative "edge cases."

Q1. Moments of a toy distribution

Consider a bivariate distribution $p(\vec{x})$ that is concentrated on *S* "spokes" emanating from the origin, each of unit length, and is uniformly distributed along those spokes. The directions of the spokes are specified by unit vectors \vec{v}_k , $k \in \{1,...,S\}$, each at an angle φ_k with respect to some reference direction. Project this distribution onto a line at an angle θ with respect to the same reference. See diagram below for S = 3; $p(\vec{x})$ is concentrated on the solid "Y".

A) Write the *n* th moment $M_n(\theta)$ of the resulting distribution in terms of the φ_k . B) Under what conditions on the \vec{v}_k are the means of all those distributions is zero, i.e., that $M_1(\theta) = 0$ for all θ ? C) What can one say about the shape of $M_2(\theta)$, i.e., about the directions θ for which $M_2(\theta)$ is maximized or minimized?

Q2. Consider a special case of the distribution in Q1, of four equally-spaced, equally-weighted spokes, with one spoke at an angle of 0 to the reference line. Compute $M_2(\theta)$, $M_3(\theta)$ and $M_4(\theta)$, and determine their maxima and minima.

Q3. Consider a special case of the distribution in Q1, of three equally-spaced, equally-weighted spokes, with one spoke at an angle of 0 to the reference line. Compute $M_2(\theta)$, $M_3(\theta)$ and $M_4(\theta)$, and determine their maxima and minima.

Q4. Consider a special case of the distribution in Q1, of five equally-spaced, equally-weighted spokes. What can you say about the behavior of $M_2(\theta)$, $M_3(\theta)$ and $M_4(\theta)$?