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Abstract8

Odor attraction in walking Drosophila melanogaster is commonly used to relate neural function to9

behavior, but the algorithms underlying attraction are unclear. Here we develop a high-throughput10

assay to measure olfactory behavior in response to well-controlled sensory stimuli. We show that odor11

evokes two behaviors: an upwind run during odor (ON response), and a local search at odor offset (OFF12

response). Wind orientation requires antennal mechanoreceptors, but search is driven solely by odor.13

Using dynamic odor stimuli, we measure the dependence of these two behaviors on odor intensity and14

history. Based on these data, we develop a navigation model that recapitulates the behavior of flies15

in our apparatus, and generates realistic trajectories when run in a turbulent boundary layer plume.16

The ability to parse olfactory navigation into quantifiable elementary sensori-motor transformations17

provides a foundation for dissecting neural circuits that govern olfactory behavior.18
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1 Introduction51

Fruit-flies, like many animals, are adept at using olfactory cues to navigate towards a source of food.52

Because of the genetic tools available in this organism, Drosophila melanogaster has emerged as a leading53

model for understanding how neural circuits generate behavior. Olfactory behaviors in walking flies54

lie at the heart of many studies of sensory processing[62] [71], learning and memory [2] [53], and the55

neural basis of hunger [61] [74]. However, the precise algorithms by which walking flies locate an odor56

source are not clear.57

Algorithms for olfactory navigation have been studied in a number of species, and can be broadly58

divided into two classes, depending on whether the organisms typically search in a laminar environ-59

ment or in a turbulent environment. In laminar environments, odor concentration provides a smooth60

directional cue that can be used to locate the odor source. Laminar navigators include bacteria [11], ne-61

matodes [57], and Drosophila larvae [29] [27]. In each of these organisms, a key computation is detection62

of temporal changes in odor concentration, which drives changes in the probability of re-orientation63

behaviors. In turbulent environments, odors are transported by the instantaneous structure of air or64

water currents, forming plumes with complex spatial and temporal structure [20] [21] [78]. Within a65

turbulent plume, odor fluctuates continuously, meaning that instantaneous concentration gradients do66
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not provide simple information about the direction of the source . Navigation in turbulent environ-67

ments has been studied most extensively in moths [37] [22] [3] [40] [63], but has also been investigated68

in flying adult Drosophila [75] and marine plankton [54]. In these organisms, the onset or presence of69

odor drives upwind or upstream orientation, while loss of odor drives casting orthogonal to the direc-70

tion of flow. An important distinction between laminar and turbulent navigation algorithms is that the71

former depend only on the dynamics of odor concentration, while the latter rely also on measurements72

of flow direction derived from mechanosensation or optic flow [16]. Also unclear is the role of tempo-73

ral cues in turbulent navigation. Several studies have suggested that precise timing information about74

plume fluctuations might be important for navigation [3] [42], or that algorithms keeping track of the75

detailed history of odor encounters may promote chemotaxis [76], but the relationship between odor76

dynamics and olfactory behaviors has been challenging to measure experimentally [55].77

In comparison to these studies, olfactory navigation in walking flies has not been studied as quan-78

titatively. A walking fly in nature will encounter an odor plume that is developing close to a solid79

boundary. Such plumes are broader, exhibit slower fluctuations, and allow odor to persist further80

downwind from the source, compared to the airborne plumes encountered by flying organisms [20]81

[21] [78]. Navigational strategies in these two environments might therefore be different [28]. In lab-82

oratory studies, walking flies have been shown to turn upwind when encountering an attractive odor83

[25] [70], and downwind when odor is lost [5]. However, flies can also stay within an odorized re-84

gion when wind cues provide no direction information, by modulating multiple parameters of their85

locomotion [33]. Finally, walking flies have been shown to turn towards the antenna that receives a86

higher odor concentration [10] [26]. It is not clear how these diverse motor programs work together to87

promote navigation towards an attractive odor source in complex natural environments.88

Here we set out to define elementary sensory-motor transformations that underlie olfactory navi-89

gation in walking fruit flies. To this end, we designed a miniature wind-tunnel paradigm that allows us90

to precisely control the wind and odor stimuli delivered to freely walking flies. Using this paradigm,91

we show that flies, like other organisms, navigate through distinct behavioral responses to the presence92

and loss of odor. During odor, flies increase their ground speed and orient upwind. Following odor93

loss, they reduce their ground speed and increase their rate of turning. By blocking antennal wind sen-94

sation, we show that mechanosensation is required for the directional components of these behaviors,95

while olfaction is sufficient to induce changes in ground speed and turning. This implies that olfactory96

navigation is driven by both multi-modal and unimodal sensori-motor transformations. We next used97

an array of well-controlled dynamic stimuli to define the temporal features of odor stimuli that drive98

upwind orientation and turn probability. We found that behavioral responses to odor are significantly99

slower than peripheral sensory encoding, and are driven by an integration of odor information over100

several hundred milliseconds (for upwind orientation) and several seconds (for turn probability).101

To understand how these elementary responses might promote navigation in a complex environ-102

ment, we developed a simple computational model of how odor dynamics and wind direction influ-103

ence changes in forward and angular velocity. We show that this model can recapitulate the mean104

behavior of flies responding to a pulse stimulus, as well as the variability in response types observed105

across flies. Finally we examine the behavior of our model in a turbulent odor plume measured experi-106

mentally in air, finding that its performance is comparable to that of real flies in the same environment.107

These simulations suggest that integration over time may be a useful computational strategy for navi-108

gating in a boundary layer plume, allowing flies to head upwind more continuously in the face of odor109

fluctuations, and to generate re-orientations clustered at the plume edges. Moreover they suggest that110

multiple independent forms of sensing —flow sensing, temporal sensing, and spatial sensing— can111

work cooperatively to promote attraction to an odor source. Our description of olfactory navigation112

algorithms in walking flies, and the resulting computational model, provide a quantitative framework113

for analyzing how specific sensory-motor transformations contribute to odor attraction in a complex114

environment, and will facilitate the dissection of neural circuits contributing to olfactory behavior.115

2 Results116

2.1 ON and OFF responses to odor in a miniature wind-tunnel paradigm117

To investigate the specific responses underlying olfactory navigation, we developed a miniature wind-118

tunnel apparatus in which we could present well-controlled wind and odor stimuli to walking flies119

(Figure 1A and B and Methods). Flies were placed in rectangular arenas, where they were exposed to120

a constant flow of filtered, humidified air, defining the wind direction. Into this airflow we injected121
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pulses of odor with rapid onset and offset kinetics, producing a front of odor that was transported122

down the arena at 11.9 cm/s. The time courses of odor concentration and air speed inside the behav-123

ioral arena were measured using a photo-ionization detector (PID) and an anemometer (Figure 1E ).124

Because flies were free to move about the chamber, and because the odor from takes about 1 s to ad-125

vect down the arena, flies encountered and lost the odor at slightly different times. We therefore used126

PID measurements made a several locations in the arena to warp our behavior data to the exact times127

of odor onset and offset (see Methods, Figure 1-figure supplement 1). We used genetically blind flies128

(norpA36 mutants) in order to remove any possible contribution of visual responses. Flies were starved129

5 hours prior to the experiment, and were tested for approximately 2 hours (from ZT 2-4), in a series of130

70 second-long trials with blank (wind only) and odor trials randomly interleaved.131

We observed that in the presence of 10% apple cider vinegar (ACV), flies oriented upwind, and132

moved faster and straighter (Figure 1C, magenta traces). This “ON” response peaked 4.4±2.5 seconds133

after odor onset, but remained as long as odor was present. Following odor offset, flies exhibited134

more tortuous and localized trajectories (Figure 1C, cyan traces). This “OFF” response resembles local135

search behavior observed in other insects [79], and persisted for tens of seconds after odor offset. These136

two responses are usually readily perceptible and distinguishable by observing the movements of flies137

during an odor pulse (Figure 1C, Supplementary Video 1). On trials without odor, flies tended to138

aggregate at the downwind end of the arena (Figure 1D).139

To analyze these responses quantitatively, we first noted that flies alternated between periods of140

movement and periods of immobility (Figure 3-figure supplement 1A-B). To focus on the active re-141

sponses of flies, we considered in our analyses only those periods in which flies were moving, and142

we established a threshold of 1 mm/s below which flies were considered to be stationary (see Meth-143

ods). Then we analyzed how flies’ movements changed in response to an odor pulse by extracting a144

series of motor parameters (Figure 1F, see Methods). We computed each measure both as a function of145

time (Figure 1F) and on a fly-by-fly basis for specific time intervals before, during, and after the odor146

presentation (Figure 1G).147

During odor presentation, upwind velocity (i.e. speed of flies along the longitudinal axis of the148

arenas) and ground speed both increased significantly, while angular velocity and curvature (i.e. ra-149

tio between angular velocity and ground speed) decreased after an initial peak. This resulted in the150

straighter trajectories observed during odor; the initial peak observed in angular velocity and curva-151

ture corresponds to big turns performed by flies to orient upwind after odor onset. Following odor152

offset, angular velocity increased, while ground speed decreased, resulting in the increased curvature153

characteristic of local search (Figure 1F,G). Since an increase in probability of reorientation has been154

traditionally identified as a hallmark of localized search [11] [57] [29] [27], we calculated the turn prob-155

ability of flies in our arena as a binarized version of curvature around a threshold of 20 deg/mm.156

Indeed, turn probability increased as well after odor offset (Figure 1F,G). Upwind velocity also became157

negative after odor offset, although this response was weaker than the upwind orientation during odor,158

and peaked later than the changes in ground speed and curvature.159

Although most of the flies we tested showed ON and OFF responses as described above, we ob-160

served considerable variability between individuals (Figure 1-figure supplement 2). Individuals var-161

ied in the strength of their odor responses, with some flies exhibiting strong upwind orientation and162

search, while others showed little odor-evoked modulation of behavior (Figure 1-figure supplement163

2A-C). Motor parameters from the same individual in different trials were correlated, whereas param-164

eters randomly selected from different individuals were not (Figure 1-figure supplement 2D). Thus,165

the movement parameters of the “average fly” depicted in Figure 1 underestimate the range of search166

behaviors shown by individuals, with particular flies exhibiting both much stronger and much weaker167

ON and OFF responses. There was a slight tendency for responses to be weaker during the first few168

trials; afterwards, this behavior was stable (on average) across the entire experimental session (Figure169

1-figure supplement 2F). Sighted flies of the same genetic background also showed ON and OFF re-170

sponses (Figure 1-figure supplement 3), with increases in upwind velocity and ground speed during171

odor, and increases in angular velocity and decreased ground speed after odor offset. However, the172

increase in angular velocity appeared to be weaker, on average, in these flies.173

Together, these data indicate that apple cider vinegar drives two distinct behavioral responses: an174

ON response consisting of upwind orientation coupled with faster and straighter trajectories, and an175

OFF response consisting of slower and more curved trajectories.176
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2.2 Local search is driven purely by odor dynamics177

We next asked whether any change in behavior could be produced by odor in the absence of wind178

information. Previous studies have found that optogenetic activation of orco+ neurons did not elicit179

attraction [72], unless wind was present [5]. However, modulation of gait parameters by odor has also180

been observed when the wind is directed perpendicular to the plane of the arena [33]. To ask whether181

walking flies could respond to odor in the absence of wind, we stabilized the third segment of the182

antennae using a small drop of UV glue. Fruit flies sense wind direction using stretch receptors that183

detect rotations of the third antennal segment [81]. This manipulation therefore renders flies “wind-184

blind” [13] [7].185

We found that wind-blind flies showed severely impaired directional responses to odor and wind.186

Upwind velocity was not significantly modulated either during the odor or after (Figure 2A-B, top).187

Indeed, odor-induced runs in different directions (either up- or downwind or sideways) could be ob-188

served in individual trajectories (Figure 2C). In addition, the downwind positional bias seen in the189

absence of odor was reduced (Figure 2D). The average arena position of wind-blind flies on no-odor190

trials was no different from that of intact flies in the absence of wind (Figure 2D). Thus, antennal wind191

sensors are critical for the oriented components of olfactory search behavior.192

However, wind-blind flies still responded to odor by modulating their ground speed and angular193

velocity. Wind-blind flies increased their curvature after odor offset and also increased their ground194

speed during odor (Figure 2B). These changes can be seen in the examples shown in Figure 2C, where195

flies adopt somewhat straighter trajectories during odor, and exhibit local search behavior following196

odor offset. These results imply that odor can directly modulate gait parameters to influence navigation197

in the absence of wind. Together these experiments show that olfactory navigation depends both on198

multimodal processing (odor-gated upwind orientation), and on direct transformation of odor signals199

into changes in ground speed and curvature.200

2.3 ON and OFF responses to dynamic stimuli201

Because natural odor stimuli are highly dynamic, we next asked what features of the odor signal drive202

ON and OFF responses. To address this question, we presented flies with a variety of dynamically203

modulated stimuli. We focused our analysis on upwind velocity and turn probability, as measures of204

the ON and OFF response respectively, as these parameters provided the highest signal-to-noise ratio.205

We first looked at how ON and OFF behaviors depended on the concentration of the odor stimulus.206

In these experiments, different groups of flies were exposed to square pulses of apple cider vinegar at207

dilutions of 0.01%, 0.1%, 1% and 10% (Figure 3A-B). We found that both upwind velocity during odor208

and turn probability after offset grew with increasing odor concentration between 0.01% and 1%, but209

saturated or even decreased at 10% (Figure 3A-B). These responses were well fit by a Hill function210

with a dissociation constant kd of 0.072% (for ON) and and 0.127% (for OFF; Figure 3A and B, left211

and right insets). The fitted Hill coefficient was very close to 1 (1.03 for ON and 1.06 for OFF). A212

saturating Hill function nonlinearity is to be expected from odor transduction kinetics, and has been213

found to describe encoding of odor stimuli by peripheral olfactory receptor neurons [34] [47] [30] [66],214

and central olfactory projection neurons [51]. A decrease in response at the highest intensities could215

arise from inhibitory glomeruli that are recruited at higher odor intensity, as has been described in [67].216

We next wondered whether OFF behaviors could be elicited by gradual decreases in odor concen-217

tration, as turning behavior in gradient navigators is sensitive to the slope of odor concentration [11]218

[57]. To perform this experiment, we used proportional valves to deliver a pulse of saturating con-219

centration (10% ACV), that then decreased linearly over a period of 2.5, 5 or 10 seconds (Figure 3C-D,220

Methods). We observed that turn probability began to grow gradually as soon as the odor concentra-221

tion started to decrease (Figure 3D, white arrow), but peaked close to the point where the linear off222

ramp returned to baseline (black arrow). This result suggests some form of sensitivity adaptation, that223

allows the fly to respond to a small decrease from a saturating concentration of odor. We also noted224

that upwind velocity remained positive during these ramps (Figure 3C, white arrow), suggesting that225

ON and OFF responses can be driven —at least partially— at the same time.226

Finally, we wished to gauge the ability of flies to follow rapid fluctuations in odor concentration,227

as occurs in real odor plumes. Indeed olfactory receptor neurons can follow odor fluctuations up to228

10-20Hz [47] [38], and these rapid responses have been hypothesized to be critical for navigation in229

odor plumes [47] [30]. To test the behavioral response of flies to rapid odor fluctuations, we used230

proportional valves to create ascending and descending frequency sweeps of 10% ACV between ap-231

proximately 0.1 and 1 Hz (Figure 3E-H). The peak frequency we could present was limited to 1 Hz, as232

5



we found that frequencies higher than this became attenuated at the downwind end of the arena, pre-233

sumably because odor diffuses as it is transported downwind, blurring the differences between peaks234

and troughs in the stimulus (see Methods). In addition, we presented a “plume walk”: an odor wave-235

form created by taking an upwind trajectory at fly pace through a boundary layer plume measured236

using planar laser imaging fluorescence (PLIF; Figure 3I-J, see Methods).237

As in previous experiments, we warped all behavioral data to account for the fact that flies en-238

counter the odor fluctuations at different times depending on their position in the arena (Figure 1-figure239

supplement 1 and Methods). In addition, we excluded behavioral data points within 3 mm of the side240

walls, where boundary layer effects would cause slower propagation of the stimulus waveform. We241

also excluded responses occurring after each fly reached the upwind end of the arena, where arena242

geometry would constrain their direction of movement. The resulting traces represent our best esti-243

mate of the time courses of behavioral parameters (Figure 3-figure supplement 1) although we cannot244

completely rule out some contribution of odor diffusion or arena geometry.245

We found that upwind velocity tracked odor fluctuations at the lowest frequencies, but that mod-246

ulation became attenuated at higher frequencies (end of the ascending frequency sweep and start of247

the descending frequency sweep; Figure 3E and G), suggesting low-pass filtering of the odor signal.248

Similarly, upwind velocity peaked in response to nearly every fluctuation in the “plume walk”, but249

remained elevated during clusters of odor fluctuations (Figure 3I). The frequency-dependent attenua-250

tion was seen in both ascending and descending frequency sweeps, arguing against it being an effect251

of position in the arena, or duration of exposure to odor. Attenuation was not due to the filter imposed252

on trajectories during processing, as it was visible also when this filtering step was omitted (Figure253

3-figure supplement 1C-D). We think it is also unlikely to be due to a limit on our ability to measure254

fast behavior reactions. We observed rapid decreases in ground speed in response to click stimuli that255

did not attenuate at higher frequencies (Figure 3-figure supplement 1C,F), arguing that the attenuation256

seen with odor does not reflect a limit on detecting rapid behavioral responses. Turn probability at257

offset showed even stronger evidence of low-pass filtering. Fluctuations in turn probability were atten-258

uated during the higher frequencies of both frequency sweeps, and the strongest responses occurred259

at the end of the stimulus to the absence of odor (Figure 3F, H, J). The initial peaks in turn probability260

most likely represent the initial upwind turn, rather than an OFF response.261

Together these experiments provide detailed measurements of the way that ON and OFF behav-262

iors depend on the history of odor encounters. Moreover they suggest that the two responses depend263

on odor history in different ways, with rapid fluctuations leading to elevated ON responses and sup-264

pressed OFF responses.265

2.4 Phenomenological models of ON and OFF responses266

We next sought to develop computational models that could account for the behavioral dynamics de-267

scribed above. A challenge was that behavioral responses saturated at concentrations above 1% ACV,268

and they were also modulated by small decreases and fluctuations from a higher concentration (10%).269

This suggests some form of adaptation, in which the sensitivity of behavior to odorant shifts over time,270

allowing responses to occur near what was previously a saturating concentration. Sensitivity adapta-271

tion has been described at the level of olfactory receptor neuron transduction, and can be implemented272

as a slow rightward shift in the Hill function that describes intensity encoding [34] [47] [30]. We there-273

fore modeled adaptation by filtering the odor waveform with a long time constant ⌧A and using the274

resulting signal to dynamically shift the midpoint of the Hill function to the right (see Methods). The275

baseline kd of the Hill function was taken from the fits in Figure 3A and B. We call this process "adaptive276

compression" (Figure 4A) as it both compresses the dynamic range of the odor signal (from orders of277

magnitude to a linear scale), and adaptively moves the linear part of this function to the mean of the278

stimulus. We then tested four models for the ON response: one with adaptive compression followed by279

a low-pass filter (“ACF”), one with filtering followed by adaptive compression (“FAC”), and the same280

models without adaptation (“CF” and “FC” respectively). We note that the FC model, with filtering281

followed by a fixed nonlinearity, is most similar to traditional linear-nonlinear models. For simplic-282

ity, we parameterized the low-pass filter by a single time constant ⌧ON , that describes the amount of283

smoothing seen in the response (Methods).284

We first fit models of the ON response to all upwind velocities shown in Figure 3, omitting and285

reserving the “plume walk” stimulus to use as a test. We found that both models with adaptation286

performed better than models without, and that the model with adaptive compression first (“ACF”,287

Figure 4A) outperformed the adaptive model with filtering first (“FAC”, Figure 4B). As shown in Figure288

4C, model ACF correctly predicted saturation with increasing odor concentration, and also the fact that289
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responses to high odor concentrations exhibit adaptation while those to low odor concentrations do290

not. This model also correctly predicted the attenuation seen during frequency sweeps (Figure 4D and291

E), although some details of response timing early in the stimulus were not matched. We note that292

behavioral responses used for fitting were recorded in three different experiments with different sets293

of flies, and we used a single set of parameters to fit all responses; some differences between real and294

predicted response (for example the timing of response onset in Figure 3D and E vs C) may reflect295

differences in responses across experiments. The time constant of filtering was 0.72 s (see Table 1),296

significantly slower than encoding in peripheral ORNs [38] [47]. The time constant of adaptation was297

very slow (9.8 s). Models without adaptation (pink trace in Figure 4D-E) exhibited strong saturation298

during the frequency sweep, which was not observed experimentally.299

We next fit the OFF response using four related models. In this case,the adaptive compression step300

was the same, but we used a differentiating filter instead of a low-pass filter, to generate responses301

when the odor concentration decreases from a previously high level. This filter was parameterized by302

two time constants, ⌧OFF1 and ⌧OFF2, that describe the time intervals over which the current and past303

odor concentrations are measured (Figure 4F, Methods). Again we found that models with adaptation304

outperformed those without, and that the adaptive model with compression first very slightly outper-305

formed the adaptive model with filtering first (Figure 4G). This model reproduced reasonably well the306

responses of flies to odor ramps (Figure 4H). The slow time constant of filtering was 4.84 s, accounting307

for the selectivity of the OFF response to low frequencies during frequency sweeps (Figure 4I and J).308

The time constant of adaptation was of similar magnitude to that derived from fitting the ON response309

(10.62 s).310

To further assess the best-performing ON and OFF models (those with adaptive compression fol-311

lowed by filtering) we tested the performance of these models on the “plume walk” stimulus. We312

found that the ON model reproduced most major contours in the “plume walk” response (Figure 4K),313

although there was some discrepancy in the timing of peaks early in the response as for the frequency314

sweeps (Figure 4D). The OFF model also captured many of the major peaks in the behavioral response315

(Figure 4L), as well as the time course of the slow offset response after the end of the stimulus. Over-316

all the RMSE errors between predictions and data for the plume walks were comparable to those for317

the stimuli we used for fitting. We conclude that models featuring adaptive compression followed by318

linear filtering provide a good fit to behavioral dynamics over a wide range of stimuli.319

2.5 A model of olfactory navigation320

To understand how the ON and OFF functions defined above might contribute to odor attraction, we321

incorporated our ON and OFF models into a simple model of navigation. In our model (Figure 5A-C),322

we propose that odor dynamics directly influence ground speed and turn probability through the ON323

and OFF functions developed and fit above. Specifically, ON(t) drives an increase in ground speed and324

a decrease in turn rate, leading to straight trajectories, while OFF(t) drives a decrease in ground speed325

and an increase in turn rate, leading to local search (Figure 5B). Ground speed (v) and turn probability326

(P(t)) of our model flies are then defined by327

v(t) = v0 + k1ON(t)� k2OFF(t) (1)

P(t) = P0 � k3ON(t) + k4OFF(t) (2)

where v0 and P0 are baseline values extracted from behaving flies (Figure 1F).328

Second, we propose that turning has both a probabilistic component, driven by odor, and a deter-329

ministic component, driven by wind. In the absence of any additional information about how these330

turn signals might be combined, we propose that they are simply summed. To model deterministic331

wind-guided turns, we constructed a sinusoidal desirability function or “D-function” which drives332

right or leftward turning based on the current angle of the wind with respect to the fly. Such func-333

tions were originally proposed to explain orientation to visual stripes [58]. In an upwind D-function,334

wind on the left (denoted by negative y values) drives turns to the left (denoted by negative q̇ values),335

and vice-versa (Figure 5C, magenta trace). Conversely, in a downwind D-function, wind on the left336

drives turns to the right, and vice-versa (black trace). Supporting the notion of a wind direction-based337

D-function, we found that the average angular velocity as a function of wind direction in the period im-338

mediately after odor onset had a strong "upwind" shape (Figure 5D, magenta trace), while the angular339

velocity after odor offset had a weaker "downwind" shape (Figure 5D, black trace). In our navigation340

model the angular velocity of the fly is then given by341
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q̇(t) = r(t)G + k5ON(t)Du(') + k6Dd(j) (3)
342

where r(t) is a binary Poisson variable with rate P(t) and G is the distribution of angular velocities343

drawn from when r is 1 (see Methods). This first term generates probabilistic turns whose rate de-344

pends on recent odor dynamics. The second term is an upwind D-function, gated by the ON function,345

that produces strong upwind orientation in the presence of odor. The final term is a constant weak346

downwind D-function that produces a downwind bias in the absence of odor.347

This navigation model is parameterized by six coefficients (k1-k6) that determine the strength with348

which the ON and OFF functions modulate ground speed, turn probability, and the drive to turn up-349

or downwind. For example, k1 determines how much the forward velocity increases when the ON350

function increases by a specific amount. We first adjusted these parameters so that average motor351

parameters calculated from simulations of our model in response to a 10 s odor pulse would match352

the ground speed, upwind velocity, and turn probability of the “mean fly” seen in Figure 1 (Figure353

5E, see Methods and Table 2). Similar to real flies, this model produced upwind runs during the odor354

pulse and searching after odor offset (Figure 5F). Average upwind velocity during the odor and turn355

probability after the odor were comparable to measurements from real flies (compare Figure 5G and356

Figure 1G). As a second test, we set the coefficients controlling wind orientation (k5 and k6) to zero,357

making the model fly indifferent to wind direction and mimicking a wind-blind real fly. In this case,358

the model produced undirected runs during odor and search behavior at odor offset, as in our data359

(compare Figure 5H-I and Figure 2A-B).360

We also asked whether our model could account for variability in behavior seen across flies (Figure361

1-figure supplement 2). To address this question, we asked whether differences in behavior could be362

accounted for by applying fly-specific scale factors to the ON and OFF functions of the model. To define363

these scale factors, we returned to our main data set (Figure 1) and computed an ON scale value for each364

fly equal to its mean upwind velocity, divided by the mean upwind velocity across flies. An OFF scale365

value was computed similarly by taking the mean turn probability for a fly divided by the mean across366

flies. This procedure allowed us to express the behavior of each fly as a scaled version of the group367

average response. Next, keeping all other parameters in our navigation model fixed as previously368

fitted, we scaled the ON and OFF functions to match the value of individual flies. The trajectories369

produced by these scaled models resembled the behavior of individual flies both qualitatively and370

quantitatively. For example, scaling down the ON and OFF functions produced similar behavior to371

a weak searching fly (Figure 5J, compare directly to green-highlighted examples in Figure 1-figure372

supplement 2A), while scaling up the ON and OFF function produced behavior similar to a strongly-373

searching fly (Figure 5K, compare directly to blue-highlighted examples in Figure 1-figure supplement374

2A).375

Together, these results support the idea that our model captures essential features of how flies376

respond to odor and wind in miniature wind-tunnels, including the responses of intact and wind-blind377

flies, and variations in behavior across individuals. Thus, this model provides a basis for examining378

the predicted behavior of flies in more complex environments.379

2.6 Behavior of real and model flies in a turbulent environment380

Finally, we sought to test whether our model could provide insight into the behavior of real flies in381

more complex odor environments. To that end we constructed two equivalent wind tunnels capable of382

delivering a turbulent odor plume (Figure 6A; see Methods). In one tunnel (New York) we incorporated383

IR lighting below the bed and cameras above it to image fly behavior in response to a turbulent odor384

plume. In the second tunnel (Colorado), we used a UV laser light sheet and acetone vapor to obtain385

to high-resolution movies of the plume for use in modeling (Figure 6B). These two apparatuses had386

similar dimensions, and matched odor delivery systems and wind speeds. We used photo-ionization387

detector measurements to corroborate that the shape and dynamics of the plume in the New York388

tunnel was similar to the one measured in Colorado (Figure 6B).389

We next examined the behavior of walking flies in this wind tunnel. Flies were of the same genotype390

and were prepared for experiments in the same way as those used previously. They were constrained391

to walk by gluing their wings to their backs with a small drop of UV glue and by placing a 1cm-wide392

water-filled moat at the edge of the arena.393

We first tested flies with wind only (no odor) at 10cm/s. As in our miniature wind tunnels, we394

found that flies uniformly preferred the downwind end of the arena (Figure 6C). In the absence of395

wind, this preference was reduced (Figure 6D). We observed no preference for the upwind end of396
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the tunnel (which received greater ambient light from the room) or for the odor tube, confirming that397

these norpA36 flies lacked phototaxis and visual object attraction. Finally, we examined behavior in398

the presence of a plume of ACV 10%, and we observed diverse responses (Figure 6E). 37 out of 66399

(56%) flies successfully located the odor source, walking upwind and lingering in a small region close400

to the odor tube (Figure 6E, left trace). Other flies searched in the middle of the arena without getting401

close to the source (Figure 6E, middle trace, 18%), while others headed downwind and remained at the402

downwind end of the arena (Figure 6E, right trace, 15%). The rest of the flies (7 flies) either moved very403

little or moved mostly along the sides of the tunnel.404

To compare the performance of our model to the behavior of the flies, we ran simulations with our405

model using the plume movie measured in the Colorado wind tunnel as a virtual environment (Supple-406

mentary Video 2). At each time step, we took the odor concentration at the location of the simulated fly407

and used this to iteratively compute ON and OFF functions and update the fly’s position accordingly408

(Figure 6F-H). We observed that model flies produced trajectories similar to those of real flies in the409

wind tunnel. For example, some flies responded to odor with general movement upwind interrupted410

by occasional excursions out of the plume (Figure 6F); overall, 66% successfully came within 2 cm of411

the odor source. Other model flies searched but failed to locate the source (17% of trials; Figure 6H, left412

trace), while others “missed” the plume and moved downwind (17% of trials; Figure 6H, right trace).413

Using a single set of model parameters fit to the mean behavioral responses in Figure 1F, we found that414

our model yielded a similar —although somewhat higher— success rate than real flies (Figure 6I, 66%415

versus 56% success rate).416

Given the large degree of variability in behavior across individuals, we wondered if this variability417

could account for the difference in success rates between real and model flies. We therefore ran simula-418

tions incorporating variability in fly behavior. In each trial of this simulation, we randomly drew a pair419

of ON and OFF scale values (as described previously) and used it to scale the ON and OFF responses of420

the model for that trial. Introducing variability in the model decreased the success rate to 45% (Figure421

6I), and made it slightly worse than that of real flies in the wind tunnel. This simulation produced 27%422

“failed” searches and 28% trials in which flies “missed” the plume and went downwind.423

The simulations described above indicate that the trajectories produced by our model in a turbulent424

environment are qualitatively similar to those produced by real flies. To gain insight into the roles that425

ON and OFF behaviors play in this environment, we color-coded model trajectories according to the426

magnitude of the ON and OFF functions underlying them (Figure 6F-G). We observed that the ON427

function was dominant throughout most of the odorized region, while excursions from the plume428

elicited strong OFF responses that frequently resulted in the model fly re-entering the plume. OFF429

responses were also prominent near the odor source, where they contributed to the model fly lingering430

as observed in real flies. ON and OFF magnitudes varied over a much smaller range than the range of431

odor concentrations, suggesting that the adaptive compression we incorporated into the model helps432

flies to respond behaviorally over a greater distance downwind of the source. Plotting the strengths433

of both responses as a function of position in an odor plume supported this analysis of individual434

trajectories (Figure 6J-K). This analysis showed ON being active in the area within the plume, and435

more active the closer to the center of the plume (Figure 6J), where the concentration of odor is higher436

and intermittency is lower. This suggests that ON responses are responsible for making flies progress437

within the odor area, allowing them to eventually reach the odor source. The OFF function was most438

active in the area surrounding the odor plume (Figure 6K), suggesting it plays a role in relocating the439

plume after flies walk outside of it and the odor signal is lost. OFF values were also high just upwind of440

the source. Notably, OFF values were generally low within the plume, even though large fluctuations441

do occur within this region. This suggests that the slow integration time of the OFF response may help442

it to detect the edges of the time-averaged plume, allowing flies to slow down and search only when443

the plume has genuinely been exited.444

To asses the relative role of ON and OFF functions in promoting source localization, we ran a series445

of simulations in an odor plume (500 trials each), systematically changing the scaling factors of the446

ON and OFF functions (Figure 6L). We observed that performance increased with both functions, but447

that ON was more critical for success in the plume, producing large improvements in performance448

as it increased. This is consistent with the idea that wind direction is a highly reliable cue in this449

environment (indeed, it is likely more reliable in our model than in reality, as we did not incorporate450

local variations in flow induced by turbulence into our model). To test the idea that ON and OFF451

might have different importance in a windless environment, we repeated the analysis just described in452

a simulated Gaussian odor gradient with no wind (Figure 6M). In this environment, success rates were453

lower, but the contributions of ON and OFF were more similar, with higher success rates when the OFF454

function was the strongest for any given strength of the ON function. These results suggest that ON455
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and OFF responses have different impact on success depending on the features of the environment.456

2.7 Role of spatial comparisons in plume navigation457

In addition to the ON and OFF functions described here, walking Drosophila have also been shown458

to perform spatial comparisons across their antennae, and to turn towards the antenna that receives459

a higher odor concentration [10] [26]. Such turns can be produced using optogenetic activation of460

olfactory receptor neurons in one antenna, arguing that they are independent of wind sensing [26].461

Because the fly’s antennae are located so close to one another, and because it has been unclear what462

kind of spatial information a plume provides, the role of these spatial comparisons in plume navigation463

has been questioned [10]. To ask whether such comparisons could contribute to source finding in the464

boundary layer plume that we measured, we incorporated a fourth term into the total angular velocity465

in our model:466

q̇(t) = r(t)G + k5ON(t)Du(') + k6Dd(j) + k7(Cl � Cr) (4)

467

Here Cl and Cr represent the odor concentrations at the left and right antennae, processed by the same468

adaptive compression function used previously (see Methods). The left antenna was taken to be at469

the position of the fly, and the right antenna was taken to be one pixel (740 µm) to the right. The470

results of these simulations depended heavily on the choice of gain k7. Based on the results of [10]471

and [26], we estimated a gain of approximately 40 deg/s when the concentration difference between472

the two antennae is maximal. In this case, spatial comparisons did not contribute significantly to the473

probability of successfully finding the source (Figure 7A-C). However, if we increased the gain to 300474

deg/s, we found that performance of the model improved significantly, from 67% to 76%. Under these475

conditions, trajectories remained closer to the center of the plume and were less dispersed around476

the source (Figure 7A-B, third column). We observed a contrary phenomenon when we switched the477

position of the antennae in the model, so that information from the right side was interpreted as left,478

and vice-versa. This made model flies more prone to leave the area of the plume and wander off,479

decreasing their success rate to 54% (Figure 7A-C, fourth column). In the absence of wind sensation,480

flies performing a correct bilateral comparison were unable to locate the odor source (Figure 7A-C, fifth481

column). These results argue that nearby locations in the plume contain information that can be used482

to aid navigation (if the gain is high enough), but that this information is insufficient to find the odor483

source in the absence of wind.484

To explore how performance depended on the interaction of wind sensation and spatial sensing, we485

varied the strength of these two behavioral components (Figure 7D). This analysis showed that some486

wind sensing is absolutely required to find the odor source, as almost no flies find the source when487

the wind coefficients are set to zero. However, in the presence of wind, bilateral sensing, controlled by488

k7, improves performance, with the greatest improvements coming at the highest gain. Thus, although489

the contributions of wind sensing and bilateral sensing sum linearly to control angular velocity in our490

model, their effects on finding the source are nonlinear, presumably because of the structure of the491

plume itself.492

In addition, we asked whether both temporal sensing and spatial sensing contribute to performance493

in the plume. To do this, we varied the magnitude of the OFF response and the gain of bilateral sensing494

(Figure 7E), while keeping the strength of wind sensation constant. In this case we observed that both495

components contributed to increased performance. This is consistent with our observations of model496

trajectories, which suggest that the OFF response and bilateral sensing work together to help reorient497

model flies into the plume when they wander out of it.498

Together these results suggest that three different forms of sensation —flow sensing (wind), tempo-499

ral sensing (OFF response), and spatial sensing (bilateral comparisons)— can all contribute to finding500

an odor source, but that the precise contribution of each mechanism depends both on the environment501

and on the gain or sensitivity of the animal to each measurement. These data support the idea that502

olfactory navigation in complex environments can be decomposed into several largely independent503

sensori-motor transformations, and provide a foundation for investigating the neural basis of these504

components.505
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3 Discussion506

3.1 Quantitative measurement of olfactory attraction behavior in adult507

fruit-flies508

The ability to navigate towards attractive odors is widespread throughout the animal kingdom and is509

critical for locating both food and mates [6]. Taxis towards attractive odors is found even in organisms510

without brains, such as E. coli, and is achieved by using activation of a receptor complex to control511

the rate of random re-orientation events, called tumbles or twiddles [24]. Precise quantification of the512

behavior elicited by controlled chemical stimuli has been critical to the dissection of neural circuits513

underlying navigation in gradient navigators such as C. elegans [31] and Drosophila larvae [73].514

Larger organisms that navigate in air or water face fundamentally different problems in locating515

odor sources [16] [44]. Odors in open air are turbulent. Within a plume, odor concentration at a single516

location fluctuates over time, and local concentration gradients often do not point towards the odor517

source [20] [78]. To solve the problem of navigating in turbulence, many organisms have evolved518

strategies of combining odor information with flow information. For example, flying moths and flies519

orient upwind using optic flow cues during odor [37] [22] [75]. Marine invertebrates travel upstream520

when encountering an attractive odor [54]. Although neurons that carry signals appropriate for guiding521

these behaviors have been identified [50] [49], a circuit-level understanding of these behaviors has been522

lacking. Obtaining such an understanding will require quantitative measurements of behavior coupled523

with techniques to precisely activate and inactivate populations of neurons.524

In recent years, the fruit-fly Drosophila melanogaster has emerged as a leading model for neural cir-525

cuit dissection [68]. The widespread availability of neuron-specific driver lines, the ease of expressing526

optogenetic reagents, and the ability to perform experiments in a high-throughput manner have estab-527

lished the fruit-fly as a compelling experimental model. Here we have developed a high-throughput528

behavioral paradigm for adult flies that allows for precise quantification of fly movement parameters529

as a function of well-controlled dynamic odor and wind stimuli. An important distinction between530

our paradigm, and others previously developed for flies [33] [75] [5], is that it allows us to control the531

odor and wind stimuli experienced by the flies regardless of their movement. This "open loop" stim-532

ulus presentation allowed us to measure the dependence of specific behaviors on odor dynamics and533

history. In addition, our paradigm allows for movement in two dimensions (in contrast to [70] [5]),534

which allowed us to observe and quantify search behavior elicited by odor offset. By combining this535

paradigm with techniques to activate and silence particular groups of neurons, it should be possible to536

dissect the circuits underlying these complex multi-modal forms of olfactory navigation.537

3.2 Unimodal and multimodal responses guide olfactory navigation in538

adult Drosophila539

In our behavioral paradigm, we observed two distinct behavioral responses to a pulse of apple cider540

vinegar: an upwind run during odor, and a local search at odor offset. Previous studies have suggested541

that flies cannot navigate towards odor in the absence of wind [5], while others have suggested that542

odor modulates multiple parameters of locomotion, resulting in an emergent attraction to odorized543

regions[33]. Our findings suggest a synthesis of these two views. We find that upwind orientation544

requires wind cues transduced by antennal mechanoreceptors. In contrast, offset searching is driven545

purely by changes in odor concentration. In computational model simulations, we found that when546

wind provided a reliable cue about source direction, wind orientation was the major factor in the suc-547

cess of a model fly in finding the source. However, when wind cues were absent, ON and OFF behav-548

iors both played equal roles. In real environments, wind direction is rarely completely reliable [45], so549

both behaviors are likely to contribute to successful attraction.550

The ON and OFF responses that we describe here have clear correlates in behaviors described in551

other organisms. The upwind run during odor has been described previously [25] [70] and seems to552

play a similar role to the upwind surge seen in flying insects [77]. Upwind orientation in walking flies553

appears to depend entirely on mechanical cues while upwind orientation during flight has been shown554

to be sensitive to visual cues [36] [35] [75]. Searching responses after odor offset have been observed555

in walking cockroaches [79], and have been observed in adult flies following removal from food [23]556

[39] but have until recently not been reported in flies in response to odor [65]. The OFF response seems557

to play a role related to casting in flying insects, allowing the fly to relocate an odor plume once it has558

been lost, although the response we observed did not have any component of orientation orthogonal to559

the wind direction, as has been described in flight [37] [75]. OFF responses were weaker in flies lacking560
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the norpA36 allele, suggesting that vision may be able to substitute to some degree for search behavior,561

or that the norpA36 allele itself promotes more vigorous searching.562

3.3 Temporal features of odor driving ON and OFF behaviors563

A common feature of chemotaxis strategies across organisms is the use of temporal cues to guide be-564

havior. In gradient navigators, the dependence of behavior on temporal features of odor is well estab-565

lished. Bacteria respond to decreases in attractants over an interval of about 2 seconds [8]. Pirouettes566

in C. elegans are driven by decreases in odor concentration over a window of 4-10 seconds [57]. The567

temporal features of odor that drive behavioral reactions in plume navigators are less clear. Studies of568

moth flight trajectories in a wind tunnel have suggested that moths respond to each filament of odor569

with a surge and cast [3] [77], and cease upwind flight in a continuous miasma of odor [35]. These find-570

ings have led to the idea that the rapid fluctuations found in plume are critical for promoting upwind571

progress [3] [42]. In contrast, Drosophila have been observed to fly upwind in a continuous odor stream572

[12], suggesting that a fluctuating stimulus is not required to drive behavior in this species. Flight573

responses to odor have been described as fixed reflexes [75], although they have also been shown to574

depend on odor intensity and history [55]. Measurement of these dependencies has been hampered by575

the inability to precisely control the stimulus encountered by behaving animals.576

Here we have used an open loop stimulus and a very large number of behavioral trials, to directly577

measure the dependence of odor-evoked behaviors on odor dynamics and history. We find that in578

walking Drosophila, ON behavior (upwind orientation) is continuously produced in the presence of579

odor. ON behavior exhibited a filter time constant of 0.72 seconds, significantly slower than encoding580

of odor by peripheral olfactory receptor neurons [38] [47]. We think it is unlikely that this represents a581

limit on our ability to measure behavioral reactions with high temporal fidelity, as we observed very582

rapid, short-latency freezing in response to valve clicks that were faster and more reliable than olfactory583

responses. One possible explanation for this difference is that olfactory information may be propagated584

through multiple synapses before driving changes in motor behavior, while the observed freezing may585

be a reflex, executed through a more direct coupling of mechanoreceptors and motor neurons.586

OFF responses (increases in turn probability) were driven by differences between the current odor587

concentration, and an integrated odor history with a time constant of 4.8 seconds. This long integra-588

tion time was evident in responses to frequency sweeps and to the “plume walk”, where increases in589

turn probability were only observed in response to relatively slow odor fluctuations, or to long pauses590

between clusters of odor peaks. This filtering mechanism may allow the fly to ignore turbulent fluctua-591

tions occurring within the plume, and to respond with search behavior only when the overall envelope592

of the plume is lost. The neural locus of this offset computation is unclear. Olfactory receptor neurons593

that are inhibited in the presence of odor can produce offset responses when odor is removed [47];594

such inhibitory responses are generally odorant specific [32]. In addition, inhibition after odor offset595

is observed in many olfactory receptor neurons, and the dynamics of this inhibition have been shown596

to predict offset turning in Drosophila larvae [66]. Alternatively, the OFF response could be computed597

centrally in the brain. For example, many local interneurons of the antennal lobe are broadly inhibited598

by odors [18] and exhibit offset responses driven by post-inhibitory rebound [48]. Rebound responses599

grow with the duration of inhibitory current [48], providing a potential mechanism for slow integra-600

tion. Experiments testing the odor and glomerulus specificity of the OFF response could be used to601

distinguish between these possibilities, as ORN temporal responses are specific to particular odorants602

[32], while LN temporal responses are similar across odorants [18].603

In addition to low-pass filtering, we found that behavioral responses to odor were best fit by mod-604

els that included a compressive nonlinearity —in the form of a Hill function— whose sensitivity was605

slowly adjusted by adaptation. This type of adaptive compression has been observed in the transduc-606

tion responses of Drosophila olfactory receptor neurons [34] [47] [30]. Additional adaptation has been607

observed at synapses between first and second order olfactory neurons [46] [14]. Adaptation at mul-608

tiple sites in the brain may contribute to the relatively slow adaptation time constants we measured609

for behavior (9.8 and 10 seconds for ON and OFF respectively.) Our adaptive compression model has610

some similarity to the quasi-steady state model of [66], in which sensitivity to odor is dynamically ad-611

justed to a running average of recent changes in odor history. Similar to that study in larvae, our study612

also suggests that events early in olfactory transduction can shape the time course of subsequent motor613

responses.614

Why might olfactory behavior in walking flies reflect integration of olfactory information over time615

while upwind flight in moths appears to require a rapidly fluctuating stimulus? Several possibilities616

are worth considering. One is that the temporal demands of walking differ from those of flight. A fly-617
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ing moth travels at much faster speeds and over longer distances than a walking fly and will therefore618

traverse a plume in less time. Second, plumes developing near a boundary are broad and relatively619

continuous, while those in open air, particularly at the long distances covered by moths, are much620

more intermittent [20] [17] [80], again making detection of the plume edge potentially more impor-621

tant than responding rapidly to each plume encounter. Finally, receptor-odorant interactions can have622

different kinetics [47] and may induce differing amounts of adaptation [15]. Differences in temporal623

processing of odors across species could also therefore reflect differences in the kinetics of individual624

odor-receptor interactions. Experiments expressing moth receptors in fly neurons, or comparing the625

history-dependence of flight vs walking reactions in the same species, may help resolve these differ-626

ences. Rapid odor fluctuations have also been observed to impair upwind progress in some moth627

species [60].628

3.4 Modeling olfactory search behavior629

To relate elementary sensory-motor transformations to behavior in complex odor environments, we630

developed a simple model of olfactory navigation. In our model, different forms of sensation, such as631

flow sensing (wind), temporal sensing (offset response) and spatial sensing (comparisons across the632

antennae) each produce distinct changes in forward and in angular velocity. The contributions of each633

form of sensing are summed to generate total turning behavior. Our model differs from previous mod-634

els of turbulent navigation [59] [4] [75] in that it does not specify any distinct behavioral states such as635

"upwind orientation" or "casting." This is consistent with the observation that intermediate behavior, in636

which a positive upwind velocity overlaps with an increase in angular velocity, can be observed during637

decreasing odor ramps. Our model also differs from those requiring the animal to derive and main-638

tain an estimate of the source position [76] [43]. The only “memory” required by our model is a slow639

adaptation and an offset response with a long integration time. Slow adaptation has been observed in640

the responses of olfactory receptor neurons and projection neurons [34] [47] [46] [14] [30], while offset641

responses with long integration times have been observed in antennal lobe interneurons [48]. Thus,642

both these types of history-dependence have been experimentally demonstrated.643

To validate our model, we showed that it can reproduce several features of experimentally ob-644

served fly behavior. First, the model can produce the upwind run during odor and the local search at645

offset that we observe in response to odor pulses in our miniature wind-tunnels. Second, it can still646

produce straighter trajectories and local search in the absence of wind information. Third, variation647

in the scale of the ON and OFF functions can generate the type of variability we observe in behav-648

ior across flies. Finally, the model produces a distribution of behaviors (source finding, intermediate649

search, and downwind orientation) similar to that of real flies when tested in a turbulent odor plume.650

Despite these similarities, there are aspects of fly behavior that our model does not capture. For ex-651

ample, we were unable to precisely match the distribution of angular velocities observed in our data652

and still produce realistic trajectories. This suggests that there is additional temporal structure in real653

fly behavior that our model lacks. There are also discrepancies between our model predictions and654

the timing of responses near odor onset (particularly in the frequency sweep responses) that might655

reflect the simplicity of the filter model used, or might reflect real variability in the latency of flies to656

respond to odor. Nevertheless, our model provides a relatively straightforward way to understand657

the relationship between temporal filtering of odors, sensory-motor coupling, and behavior in various658

odor environments. It should thus facilitate studies relating changes in neural processing to olfactory659

behavior.660

A question left open by our model is the role of spatial sensing (bilateral comparisons) in guiding661

navigation. We found that if the gain was set high enough, this form of sampling could significantly662

improve the model’s performance (unrealistic gain values, of 1500 deg/s, could produce performance663

rates of over 95% success). This result is surprising, as previous studies have concluded that nearby664

samples taken in turbulent plume do not contain usable information [10]. However, recent studies665

have suggested that plumes may contain more usable spatial information than previously thought [9],666

particularly when the plume forms near a solid boundary [28]. Using average gain values estimated667

from studies in tethered flies on a trackball [10] [26] we found that bilateral sampling contributed fairly668

little to performance, because the concentration differences across the antennae were typically quite669

small. In previous studies, bilateral sampling has been investigated largely using long-lasting odor670

stimuli of fixed concentration. It would be interesting in the future to ask whether flies can respond671

more strongly to small concentration differences when they are embedded in a fluctuating environment672

like the one measured here.673
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5 Materials and Methods870

5.1 Key resources871

Reagent type
or resource Designation Source or

reference Identifiers Additional
information

Gene
(Drosophila melanogaster) norpA NA FLYB:FBgn0262738 —

Genetic reagent
(Drosophila melanogaster) w[1118] norpA[36] This paper FLYB:FBal0013129

Progenitor = norpA[36]
obtained from C. Desplan;
backcrossed 7 generations

to Bloomington stock
5905 = w[1118]

5.2 Fly strains872

We used genetically blind norpA36 mutants, [52] [56] to avoid visual contributions to behavior. The873

norpA36 allele was backcrossed for seven generations to an isogenic w1118 stock (Bloomington 5905, also874

known as iso31 as described in [64] that exhibits robust walking behavior [69]), using PCR to follow the875

allele through backcrossing. norpA36 males were crossed to w1118 virgins and virgin female norpA36/+876

progeny were backcrossed to w1118 males. In each subsequent generation, 15 to 20 virgin females were877

backcrossed singly to w1118 males and genomic DNA was extracted from each female after several878

days of mating. PCR amplification was performed with primers flanking the norpA36 deletion (oNS659879

AAACCGGATTTCATGCGTCG and oNS660 TGTCCGAGGGCAATCCAAAC; 95�C 2 min, 30x(95�C880

20 s, 60�C 10 s, 72�C 15 s, 72�10 min) to identify heterozygous norpA36/+ mothers giving rise to wild-881

type (172 bp) and mutant (144 bp) products. After seven generations of backcrossing, single males882

were crossed to an isogenic FM7 stock to generate homozygous stocks, and those bearing norpA36 were883

identified with PCR. Both w1118 norpA36 and w+ norpA36 stocks were generated during backcrossing.884

We used only w1118 norpA36 flies for behavior. For this reason, we used w1118 flies as “sighted” controls,885

although the w1118 allele does affect vision as well.886

All flies were collected at least 1 day post-eclosion. After collection, flies were housed in custom-887

made cardboard boxes at room temperature (21.5-23.5�C), with a light cycle of 12 hours, for at least 3888

days prior to experiments to allow habituation. Different boxes were shifted by two hours relative to889

the others to allow us to perform several experiments with the same conditions in the same day. At890

the time of the experiments, flies were 5 to 14 days old (average age was 7.1±1.8 days). Prior to the891

experiments, flies were starved for 5 hours in an empty transparent polystyrene vial with a small piece892

of paper soaked in distilled water to humidify the air. Experiments were performed between 2-4 hours893

after lights on (ZT 2-ZT 4).894

5.3 Behavioral apparatus895

Our behavioral apparatus [1] was modified from the design of [5] and was designed to allow us to896

monitor the position and orientation of flies walking freely in two dimensions while tightly controlling897

the odor and wind stimuli they experienced. The behavioral arena was composed of several layers of898

laser-cut plastic, all 30 by 30 cm in size with varying thicknesses (detailed below), in which different899

shapes were cut to create an internal air circuit and four individual behavioral chambers that measured900

14 by 4 by 0.17 cm each. The arena was designed using Adobe Illustrator (design: Adobe Systems, San901

Jose, CA; plastics: Pololu Corp, Las Vegas, NV and McMaster, Robbinsville, NJ; laser cutting: Pololu).902

The internal layers —in which the individual chambers were cut— were made of 0.5 mm-thick PETG903

(McMaster reference: 9513K123), 0.8 mm delrin (McMaster: 8575K131), and 0.4 mm fluorosilicone rub-904

ber (McMaster: 2183T11). Additionally, the arenas had a floor and ceiling layers made of 4.5 mm clear905

acrylic (Pololu).906

The ceiling was held in place with 7 set screws; combined with the fluorosilicone rubber layer this907

ensured that air did not escape from the chambers and produced more uniform odor concentrations908

throughout the arena. Each behavioral chamber had a separate air inlet through which charcoal-filtered909

air was supplied, and an outlet at the opposite end. A series of baffles in the PETG layer, as well as910

the short vertical extent of the chambers (1.7 mm) ensured laminar flow of air through our chambers911
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(calculated Reynolds number 11.5). Total airflow through the arena, as measured by anemometer, was912

11.9cm/s.913

The arena was placed in an imaging chamber constructed from a breadboard (Thorlabs) and 80/20914

posts (McMaster: 47065T101) held in place with brackets (McMaster: 47065T236). Illumination was915

provided by an LED panel composed of an aluminum sheet (McMaster: 88835K15 ) covered with in-916

frared (IR) LED strips (Environmental lights, irrf850-5050-60-reel). A diffuser (Acrylite: WD008) was917

placed between the LED panel and the arena to provide uniform lighting. Flies were imaged from be-918

low the arena using a monochrome USB 3.0 camera (Basler: acA1920-155um) and a 12 mm 2/3” lens919

(Computar: M1214-MP2). An IR filter (Eplastics: ACRY31430.125PM) was placed between the camera920

and the arena. LEDs were controlled using buckblock drivers (Digikey). An Arduino microprocessor921

(teensy 2.0, PJRC) was used to strobe the IR LEDs at 50 Hz and to synchronize them with each camera922

frame.923

Imaging and stimulus delivery were controlled by custom software written in Labview (National924

Instruments, Austin, TX). Timing of odor was controlled by a National Instruments board (PCIe-6321).925

Flies were tracked by comparing the camera image at each time point to a background image taken926

prior to the experiment. Background-subtracted images were thresholded and binarized; a region of927

interest per chamber was then taken for further processing. Particle filtering functions were applied to928

each region of interest to remove particles less than 3 pixels (0.4 mm) long or greater than 50 pixels (6.8929

mm) long. A particle analysis function was used to identify the fly in each chamber and to compute its930

center of mass and orientation.931

Since the particle analysis function could only determine the fly’s orientation up to 180�(i.e. it932

cannot distinguish the front and back of the fly), we used a second algorithm to uniquely determine the933

animal’s orientation. Each background-subtracted image was passed through a second thresholding934

operation with a lower threshold intended to include the translucent wings. The center of mass of935

this larger particle was compared to the center of mass of the smaller wingless particle to determine936

the orientation of the fly in 360�. Orientation measurements were strongly correlated with movement937

direction, but provided a smoother readout of heading direction when its velocity was low. Position938

(X and Y coordinates) and orientation were computed in real time during data collection and saved to939

disk.940

5.4 Stimulus Delivery941

Wind and odor stimuli were delivered through inlets at the upwind end of the arena. Each arena was942

supplied with a main air line that provided charcoal-filtered wind. Wind flow rate was set to 1 L/min943

by a flowmeter (Cole-Parmer, Vernon Hills, IL). This line could be shut off by a 3-way solenoid valve944

(Cole Parmer, SK-01540-11) in order to measure behavior in the absence of wind (Figure 2). To measure945

air flow, we used an anemometer (miniCTA 54T30, Dantec Dynamics, Skovlunde, Denmark), inserting946

the probe into the chambers through holes on a special ceiling made for this purpose. The anemometer947

was calibrated by measuring the outlet of a single 25 mm diameter tube (filled with straws to laminarize948

flow) connected directly to a flow meter. The measured air velocity was 11.9 cm/s.949

Odor was delivered via rapidly switching three-way solenoid valves (LHDA1233115H, The Lee950

Company, Westbrook, CT) located just below the arena, that directed odorized air either to the cham-951

bers or to a vacuum. Each chamber had its own valve, and odor was injected just downstream of the952

main air inlet, 1.7 cm upstream of the baffle region of the chamber. Charcoal-filtered air was odorized953

by passing it through a scintillation vial filled with 20 ml of odorant solution (apple cider vinegar or954

ethanol), then directed through a manifold (McMaster: 4839K721) to each of the four valves. Impor-955

tantly, the vials containing the odor solution were almost full, creating a relatively small head space956

where odor could readily accumulate. Odorized air flow rate was set to 0.4 l/min using flowmeters.957

During non-odor periods, odorized air was directed into a vacuum manifold and away from the ap-958

paratus. Flow rates in the arena and vacuum manifold were matched to eliminate transients in odor959

concentration during switching. An equal volume of "balancing" air was injected into the arena dur-960

ing these periods to maintain a constant air flow rate throughout the experiment. Balancing air was961

humidified by passing over an identical scintillation vial filled with water and was delivered by an962

identical 3-way valve. Odor and balancing valves fed into a small t-connector, that was suspended963

from the arena using ⇡1 cm of tygon tubing (0.8 mm inner diameter, E-3603). This design, in which964

odor flowed continuously and was switched close to the arena, produced rapid odor dynamics with965

few concentration artifacts, but also a small mechanical stimulus when the valve was switched. This966

odor delivery system was using for experiments in Figures 1 and 2, and for intensity experiments in967

Figure 3A-B.968
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To produce analog odor stimuli including ramps, frequency sweeps, and the plume walk stimulus,969

we added 2-way proportional valves (EVP series, EV-P-05-0905; Clippard Instrument Laboratory, Inc.,970

Cincinnati, Ohio) 20 cm upstream of the odor and balancing scintillation vials. Proportional valves971

were driven indepentendly by valve drivers (EVPD-2; Clippard) and were calibrated so that their max-972

imal opening would produce the same flow rate as in experiments using 3-way valves. (3-way valves973

were held open during experiments with analog stimuli.) Proportional valves produce increasing air-974

flow with applied current; however they exhibit both nonlinearity and histeresis, in which the effect of975

a driving current depends on the past and current state of the valve. To generate our desired stimulus976

waveforms, we first provided an ascending and descending ramp stimulus to the valves and measured977

the subsequent odor waveform in the behavioral chambers using a PID (see below). We used the re-978

sults of that measurement as a lookup table to create a driving current command that produced the979

desired odor waveforms. Lookup tables for odor and balancing valves were measured separately. We980

used PID measurements at several locations in the arena to verify that the delivered odor waveform981

matched our desired odor waveform. We used an anemometer (see below) to verify that the total flow982

rate during the stimulus (in which odor and balancer valves were run together) did not vary by more983

than 1%.984

To measure odor concentration in our arenas we used a photo-ionization detector (miniPID, Au-985

rora Systems, Aurora, Canada) inserted into the arena, again using a special ceiling. All calibration986

measurements were made using 10% ethanol, which provided higher signal to noise than ACV. Mea-987

surements at the top of the arenas revealed an average rise time of ⇡180 ms and a fall time of ⇡220 ms988

for square pulses delivered using 3-way valves. The latency of the measured odor onset from nominal989

odor onset increased linearly with distance from the odor source (up to 900-1000 ms at the downwind990

end of the arena), consistent with our measurement of air velocity (Figure 1-figure supplement 1). For991

frequency sweep stimuli, we observed some widening of peaks with distance down the arena, consis-992

tent with the effects of diffusion (Figure 1-figure supplement 1). Diffusion thus set the upper limit on993

the frequency of stimuli that we could reliably deliver within our arena (about 1Hz). Presenting higher994

frequency stimuli would require higher wind speeds, but we found that higher wind speeds caused995

flies to stop moving, as previously observed [81].996

5.5 Experimental protocol997

Each experiment lasted approximately 2 hours, during which flies performed an average of 86.7±7.7998

trials. (Some trials were discarded due to tracking problems, as described below, and not all experi-999

ments lasted exactly the same amount of time). Each trial lasted 70 seconds, and was followed by a gap1000

of ⇡6 seconds while the computer switched to the next trial. There were 3 to 4 types of trials that were1001

randomly interleaved during the experiment. One of those types was always a blank trial, in which1002

flies only experienced clean air flow. The other types corresponded to different types of odor stimuli,1003

that were dependent on the experiment: namely, square odor pulses for experiments in Figures 1, 2 and1004

3A-B; odor ramps in Figure 3C-D; frequency sweeps and plume data in Figure 3E-J. To ensure repeata-1005

bility, data for all experiments was collected over several different days (5 to 9, often non-consecutive).1006

For Figure 1, we used data from experiments performed over a period of 7 months.1007

For experiments in Figure 2, we rendered flies “wind-blind” by anesthetizing them on a cold plate1008

and cutting their aristae and stabilizing their antennae. We cut the aristae by clipping them with fine1009

forceps at the lowest possible level without touching the antennae. Then, we put a very small drop1010

of ultra-violet (UV) glue on the anterior side of the antennae, falling between the second and third1011

segments, as well as touching the rest of the clipped aristae. We then used a pen-sized ultra-violet1012

light to cure the glue, and made sure it was solid before putting the flies back to their home vials to1013

recover for 24 hours. The whole procedure took approximately 5 minutes, and never longer than 10.1014

We did this procedure in a pair of flies at a time, stabilizing the antenna of one and using the other as1015

sham-treated (it was placed on the cold plate and under the UV light exactly like the treated fly was).1016

For experiments in Figure 6, approximately 48 hours before the experiment, we applied a drop of1017

UV glue connecting both wings of the fly or to each wing hinge. This prevented flies from flying while1018

allowing us to still use the wings to detect heading.1019

5.6 Analysis of behavioral data1020

All analysis was performed in Matlab (Mathworks, Natick, MA) [1]. X and Y coordinates and ori-1021

entation information were extracted from the data files, and any trials with tracking errors (i.e. flies’1022

position was missed at some point) were discarded (this occurred rarely). In some trials, we observed1023
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orientation errors in the form of sudden changes of approximately 180�. In these cases, orientation was1024

corrected by calculating the heading of the flies using X and Y coordinates, and filling in the gaps in1025

orientation using the orientation that best correlated with that information, producing coherent and1026

continuous orientation vectors. Coordinates and orientations were low-pass filtered at 2.5 Hz using1027

a 2-pole Butterworth filter to remove tracking noise that was produced especially when flies were not1028

moving. X and Y coordinates were then converted to mm, and trials in which flies moved less than a to-1029

tal of 25 mm were discarded. Distance moved was calculated as the length of the hypotenuse between1030

two subsequent pairs of coordinates.1031

We next calculated a series of gait parameters from each trial’s data. Ground speed was obtained1032

by dividing the distance moved by the time interval of each frame (20 ms). Upwind velocity was calcu-1033

lated using the derivative of the filtered Y coordinates divided by the time interval of 20 ms. Angular1034

velocity was calculated as the absolute value of the derivative of the filtered unwrapped orientation (i.e.1035

orientation with phases corrected to be continuous beyond 0�or 360�) divided by the time interval of1036

20 ms. For all gait parameters shown (ground speed, upwind velocity, angular velocity), we excluded1037

data points in which ground speed was less than 1 mm. This was necessary because flies spend a large1038

amount of time standing still. Distributions of gait parameters are therefore highly non-Gaussian, with1039

large peaks at 0 (Figure 3-figure supplement 1A), and parameter means are highly influenced by the1040

number of zeros. In addition, the probability of moving (obtained by binarizing the ground speed with1041

a threshold of 1 mm/s) changes dramatically in response to odor, and remains high for tens of second1042

after odor offset (Figure 3-figure supplement 1B). Exclusion of the large number of zeros from average1043

gait parameters produced more reliable estimates of these parameters. Curvature was calculated by1044

dividing angular velocity by ground speed (excluding any points where ground speed was less than 11045

mm/s). Turn probability was calculated binarizing curvature with a threshold of 20 deg/mm.1046

Because it takes a little over a second for the odor waveform to advect down the arena, the exact1047

time of odor encounter and loss depends on the position of the fly within the arena. This advection1048

delay has a strong effect on our estimates of gait parameter dynamics, particularly for fluctuating si-1049

nusoidal stimuli. We therefore developed a warping procedure to align behavioral responses to the1050

actual time at which each fly encountered the odor on each trial. To implement this procedure, we first1051

recorded the PID response to each stimulus at three different points along the arena (Figure 1-figure1052

supplement 1). We then calculated the delay for the odor to reach the position of the fly for each time1053

frame during the odor stimulus, and shifted all the data points back by this amount. The periods be-1054

fore and after the odor stimulation are also shifted according to the initial position of flies in the odor1055

period. This method can skip a data point when the fly moves upwind or can repeat a data point when1056

the fly moves downwind, but the majority of the data are conserved and the resulting waveforms re-1057

semble very much the initial ones. After warping, all trials from all flies can be equally compared to a1058

standard PID measurement done at the top of the arenas (i.e. the odor source). Warping was applied to1059

all data shown in Figures 1-3. Note that in experiments using 3-way valves (Figure 1), the click of the1060

valve produced a brief freezing responses that was visible as a dip in ground speed. However, because1061

of the warping, the time of the valve click is distributed across flies, as their ground speeds have been1062

aligned to the time of odor encounter rather than the time of valve opening. This results in a smeared1063

dip in the ground speed trace near the beginning and end of the odor stimulus.1064

For experiments using frequency sweeps and plume walks, we additionally excluded data obtained1065

after the fly reached the top end of the chamber, as well as data from within 3 mm of the side walls.1066

These exclusions were made to minimize the effect of arena geometry on gait parameter estimates,1067

and to exclude regions where boundary layer effects would cause the odor waveform to advect more1068

slowly. To calculate the data shown in the insets of Figure 3E-H, and in Figure 3-figure supplement1069

1F, we used a jackknife procedure to resample the responses of flies to frequency sweep stimuli. We1070

made 10 estimates of the mean, excluding 34 trials from each estimate. To estimate the modulation of1071

upwind velocity and ground speed in response to each cycle of the stimuli, we took the times between1072

minima of the stimulus waveform as the limits for each cycle of the ascending frequency sweep; for1073

the descending frequency sweep we used the intervals between maxima of the odor waveform. Within1074

those limits, we calculated the minimum-to-maximum amplitude for each of the 10 different mean1075

responses. The results shown in the figures are the mean of these estimates as a function of frequency1076

of the corresponding stimulus cycles. The frequency of the cycles was estimated as 1 over the duration1077

of the cycle. Error bars in the figure insets represent the standard error (SE) across estimates, calculated1078

as1079
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SE =

s
n�1

n

n

Â
i=1

(xi � x)2

p
n

(5)

where xi is each of the peak-to-peak estimates excluding one fly, x the estimate including all flies,1080

and n the number of data subsets used (10).1081

5.7 Statistical analysis1082

In Figure 1G, Figure 2B and Figure 5G, we compared the mean values of different motor parameters1083

from the same fly in three different periods of time in the trials, namely: “before odor” from -30 to 01084

seconds before the odor, “during odor” from 2 to 3 seconds during the odor, and “after odor” from1085

1 to 3 seconds after odor offset. We performed a Wilcoxon signed rank paired test for each of those1086

comparisons and corrected the threshold for statistical significance alpha using the Bonferroni method.1087

All significant comparisons were marked with asterisks in the figures, and the exact p-values obtained1088

are presented in the following tables.1089

Comparison Upwind
velocity

Ground
speed

Angular
velocity Curvature Turn

probability
Before–during odor 2.0·10�12 3.9·10�9 1.7·10�3 4.9·10�5 2.3·10�3

Before–after odor 6.3·10�2 7.7·10�6 1.2·10�11 5.5·10�10 7.3·10�14

During–after odor 1.4·10�12 1.5·10�10 9.5·10�11 7.1·10�10 4.8·10�12

p-values for comparisons made in Figure 1G. The alpha value after correcting for multiple comparisons was 0.0167.

Comparison Upwind
velocity

Ground
speed Curvature

Before–during odor 0.27 0.016 0.34
Before–after odor 0.84 0.85 0.003
During–after odor 0.41 0.008 0.002

p-values for comparisons made in Figure 2B. The alpha value after correcting for multiple comparisons was 0.0167.

Comparison Upwind
velocity

Turn
probability

Before–during odor 1.3·10�83 1.2·10�55

Before–after odor 9.0·10�46 1.3·10�83

During–after odor 1.3·10�83 1.3·10�83

p-values for comparisons made in Figure 5G. The alpha value after correcting for multiple comparisons was 0.0001.

Comparison Upwind
velocity

Ground
speed

Angular
velocity Curvature Turn

probability
Before–during odor 9.4·10�11 4.6·10�7 5.6·10�1 1.0·10�1 3.2·10�6

Before–after odor 3.7·10�9 1.7·10�5 5.2·10�5 2.1·10�6 8.1·10�10

During–after odor 3.2·10�9 5.2·10�9 3.1·10�3 4.9·10�6 9.3·10�5

p-values for comparisons made in Figure 1-figure supplement 3B. The alpha value after correcting for multiple comparisons was 0.0167.
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To estimate the Standard Error of the proportion of successful trials shown in Figure 6I and in1090

Figure 7C, we used the formula1091

SE =

r
p(1 � p)

n
(6)

where p was the proportion of successful trials and n the number of trials.1092

1093

To test for statistical differences in Figure 7C, we calculated a z statistic by normal approximation1094

of the corresponding binomial distributions according to:1095

z =
p1 � p2q

p(1 � p)
� 1

n1
+ 1

n2

� (7)

where p1 and p2 are the probabilities of success in the two distributions being compared, p is the1096

probability of both distributions combined, and n1 and n2 are the number of trials in the two distri-1097

butions. We then estimated the p-values by evaluating a normal cumulative distribution function of a1098

standard normal distribution for the resulting z values. This analysis yielded the following results:1099

Comparison z statistic p-value
k7 = 0 VS k7 = 40deg/s 1.03 0.30062
k7 = 0 VS k7 = 300deg/s 3.50 0.00046

k7 = 0 VS k7 = 300deg/sSWAP 4.12 0.00004

z statistics and p-values for comparisons made in Figure 7C. The alpha level used was 0.05.

5.8 Computational modeling1100

Our computational model was composed of two parts [1]. In the first, we asked whether simple phe-1101

nomenological models, comprised of a linear filtering step, and a nonlinear adaptive compression func-1102

tion, were capable of capturing the dynamics of upwind velocity and turn probability in response to1103

a wide array of odor waveforms. We compared fits of four model versions to our behavioral data,1104

and tested the resulting best fit model by predicting responses to the plume walk stimulus. These fits1105

comprise the two temporal functions which we call ON and OFF.1106

In the second part, we asked whether a simple navigational model, based on the ON and OFF func-1107

tions fit to the data and described in Figure 5, was capable of reproducing the types of trajectories we1108

observed experimentally and of locating the source of a real odor plume. In addition, this model al-1109

lowed us to test the contribution of each of its components to successful odor localization. In the model,1110

we first compute two temporal functions of the odor stimulus, ON and OFF. These two signals are then1111

used to modulate ongoing behavioral components (angular velocity and ground speed) which itera-1112

tively update the fly’s position. The model can be run in open loop, as in our behavioral expeirments,1113

by providing an odor input as a function of time, or in closed loop, where the odor concentration at1114

any point in time depends on the fly’s position in a real or virtual space. All computational modeling1115

was performed in Matlab. Differential equations were simulated using the Euler method with a time1116

step of 20 ms.1117

5.8.1 Odor ON and OFF functions1118

The ON function was composed of an adaptive compression step and a linear filtering step (model1119

ACF in Figure 4). Adaptation was driven by an adaptation factor A(t) that accumulated slowly in the1120

presence of odor:1121

⌧A
dA
dt

= odor(t)� A(t) (8)

Compression was modeled using a Hill equation with a baseline kd of 0.01 (expressed as a fraction1122

of our highest odor concentration: 10% apple cider vinegar). This baseline value was taken from our1123

fits of responses to square pulses of different concentration (Figure 3). Adaptation slowly increased the1124
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effective kd, reducing the sensitivity of behavior to odorant, and maintaining responses of about the1125

same size over a wide concentration range:1126

C(t) =
odor(t)

odor(t) + kd + A(t)
(9)

The filtering step was given by1127

⌧ON
dON

dt
= C(t)� ON(t) (10)

For the OFF model, adaptation and compression were modeled in the same way, but filtering was1128

performed by applying two filters, one fast and one slow, and then taking the difference between the1129

slow and the fast filter output, thresholded at 0:1130

⌧ f ast
dR1
dt

= C(t)� R1(t) (11)

⌧slow
dR2
dt

= C(t)� R2(t) (12)

OFF = max(0, R2 � R1) (13)

Model parameters used in Figure 4 are shown in Table 1. These same model parameters were used1131

for all remaining simulations. We also considered 3 additional models. In the FAC model, the order1132

of operations was inverted, so the odor was first filtered, then adaptively compressed. In the CF and1133

FC models, we omitted the adaptation step, and again tried both orders of operation (compression first1134

and filtering first):1135

C(t) =
odor(t)

odor(t) + kd
(14)

We found that models lacking adaptation performed significantly worse for both ON and OFF. All1136

fits were made using the function nlintfit in Matlab. Fit parameters and RMSE values are given in Table1137

1.1138

5.8.2 Modulation of Behavioral Components1139

The temporal functions described above were used to modulate the ground speed of the fly v and its1140

heading H, from which the XY coordinates of the position of the fly at each point in time could be1141

calculated.1142

The ground speed at each time step was give by:1143

v(t) = v0 + k1ON(t)� k2OFF(t), where v � 0 (15)

where v0 is the baseline speed, set at 6 mm/s based in our behavioral data. k1 and k2 determine the1144

influence of ON and OFF functions on the final speed.1145

The heading at each time step (Dt of 20 ms) was computed by adding the instantaneous angular1146

velocity to the current heading:1147

H(t + Dt) = H(t) + Dtq̇(t) (16)

The angular velocity at each time step q̇(t) is a linear sum of several components driven by different1148

sensory stimuli: a random component, driven by odor dynamics, and two deterministic components,1149

driven by wind:1150

q̇(t) = r(t)G(0, s)2 + k5ON(t)Du(y) + k6Dd(y) (17)

The first term represents probabilistic turning whose rate is modulated by the dynamics of odor.1151

r(t) is a binary Poisson variable that generates a draw from a Gaussian distribution with mean 0 and1152

standard deviation s when it is equal to 1. The value drawn from this distribution was squared to yield1153

a distribution of angular velocities with higher kurtosis, as observed in the distribution of real flies’1154

angular velocities. However, we did not attempt to directly match the distribution of angular velocities1155

found in our data. (Indeed, we found that matching this distribution produced trajectories that were1156

far too jagged, suggesting that one of the assumptions of the model, for example that angular velocities1157
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are independent of one another, or that angular velocity is independent of forward velocity, must be1158

incorrect.) The rate of r(t) is given by1159

P(t) = P0 � k3ON(t) + k4OFF(t) (18)

Thus, the rate of random turns has a baseline of P0, decreases in the presence of odor (when ON(t)1160

is positive) and increases after odor offset (when OFF(t) is positive).1161

The second and third terms represent deterministic turns driven by wind. To model these turns,1162

we defined two sinusoidal desirability functions or D-functions (ref) —Du for upwind orientation and1163

Dd for downwind orientation— given by the equations:1164

Du(y) = sin(y) (19)
1165

Dd(y) = � sin(y) (20)

where y is the direction of the wind relative to the fly. A negative value of y indicates wind coming1166

from the fly’s left, and a positive value of q̇(t) indicates a turn to the left, so Du produces a turn to1167

the left when wind is sensed on the left and vice-versa, leading to upwind orientation. The function1168

Dd produces a turn to the right when wind is sensed on the left resulting in downwind orientation.1169

The downwind function Dd is always on but has a small coefficient, resulting in a mild downwind1170

bias when combined with baseline random turning driven by the first term r(t)G(0, s). The upwind1171

function Du is gated by the ON function and has a larger coefficient. This means that in the presence of1172

odor, this term comes to dominate turning, driving strong upwind orientation.1173

To estimate values for the coefficients k1 to k6 we ran simulations of the model using a 10 s odor1174

pulse and adjusted parameters sequentially so that analysis of the model outputs matched as closely as1175

possible the response of real flies shown in Figure 5E. We first adjusted k1 and k2 to match the ground1176

speed. Next we adjusted k5 and k6 to match the upwind velocity. Finally, we adjusted k3 and k4 to1177

match turn probability. We matched the theoretical turn probability on the model (the rate governing1178

the Poisson variable r(t) rather than the turn probability extracted from the model trajectories.1179

To generate trajectories with this model, the X and Y coordinates were calculated from v(t) and1180

H(t), according to:1181

X(t + Dt) = X(t) + Dtv(t) cos
�

H(t)
�

(21)
1182

Y(t + Dt) = Y(t) + Dtv(t) sin
�

H(t)
�

(22)

Simulations in the turbulent plume were run at 15 Hz rather than 50 Hz to match the sample rate1183

of the plume measurements. All rate constants (including turn probability per sample) were converted1184

accordingly. Supplementary Video 2 shows an example of the model navigating a real odor plume.1185

1186

To add bilateral sensing to our navigation model in Figure 7, we made two measurements of odor1187

concentration at each point in time. OdorL was the odor concentration at the location of the fly in the1188

plume movie, while odorR was the concentration one pixel (740 µm) to the right. This spacing is perhaps1189

twice the distance between a fruit fly’s antennae, but represents the closest sampling we could perform1190

using our current imaging system. We then applied the adaptive compression given by equations 71191

and 8 to each odor measurement separately:1192

CL(t) =
odorL(t)

odorL(t) + kd + A(t)
(23)

1193

CR(t) =
odorR(t)

odorR(t) + kd + A(t)
(24)

The bilateral contribution to angular velocity was computed as the difference between the two1194

compressed odor signals, multiplied by a coefficient k7 that determines how strongly the fly turns1195

when it detects a concentration difference. We estimated k7 from the literature [10] [26] by examining1196

the turn rates produced when a maximal concentration difference (CL � CR = 1) was applied across1197

the antennae. The bilateral contribution was added as a fourth component to the equation governing1198

total angular velocity (equation 17):1199

q̇(t) = r(t)G + k5ON(t)Du(') + k6Dd(j) + k7(CL � CR) (25)
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5.9 Turbulent wind tunnel construction1200

We generated a turbulent odor plume in a low-speed bench-top wind tunnel with a flow-through de-1201

sign. Two wind tunnels were built, one in Colorado (for plume measurements) and one in New York1202

(for behavioral measurements). In the Colorado wind tunnel, air entered the tunnel through a bell-1203

shaped contraction (4:1 ratio) and passed through a turbulence grid (6.4 mm diameter rods with a 25.51204

mm mesh spacing) prior to the test section. The test section was 30 cm wide, 30 cm tall, and extended1205

100 cm in the direction of the flow. Air exited the test section through a 15 cm long honeycomb section1206

used to isolate the test section from a fan located in the downstream contraction. The fan generated a1207

mean flow of air through the tunnel at 10 cm/s. Acetone was released isokinetically into the center of1208

the test section through a 0.9 cm diameter tube aligned with the flow. The tube opening was located 101209

cm downstream of the turbulence grid and 6 mm above a false floor spanning the length and width of1210

the test section. The New York tunnel was designed similarly, except that test section measured 38 cm1211

by 38 cm by 92 cm, the honeycomb was 5 cm long, and odor was released from a 1cm diameter tube at1212

floor level. Air flow was 10cm/s and odor release was isokinetic as in the Colorado wind tunnel. The1213

New York tunnel was fitted with an aluminum IR light panel (Environmental lights, irrf850-5050-60-1214

reel) 2.5 cm below a diffuser (Acrylite: WD008) and a 1 cm thick acrylic layer that acted as the arena1215

floor. A channel 1 cm wide and 0.4 cm deep was milled into this arena and filled with water to constrain1216

flies to walk within the imaging area, 31 cm wide and 87 cm long. Two cameras (Point Grey: 2.3MP1217

Mono Grasshopper3 USB 3.0) with 12 mm 2/3” lenses (Computar: M1214-MP2) were suspended ap-1218

proximately 45 cm above the arena to image fly movement. Tracking code was written in Labview and1219

used the same algorithms as described above to extract position and heading at 50Hz.1220

5.10 Plume measurements in air1221

To measure plume structure and dynamics in air, we used a planar laser-induced fluorescence (PLIF)1222

system [41] to image a plume of acetone vapor. A UV laser light sheet entered the test section of the1223

tunnel through a slit along the length of the test section to excite acetone vapor. A camera imaged the1224

resulting acetone fluorescence in the test section through a glass window. The imaging area covered up1225

to 30 cm downwind from the odor source and up to 8 cm to both sides. The plume was imaged in the1226

1 mm thick laser sheet centered on the tube 6 mm above the bed. A total of 4 minutes were recorded.1227

Images were then post-processed into calibrated matrices of normalized concentrations.1228

We produced acetone vapor by bubbling an air and helium gas mixture through flasks partially1229

filled with liquid acetone. To reduce fluctuations in concentration, a water bath maintained flask tem-1230

perature at 19 deg C which was approximately 2 degrees cooler than ambient air temperature to prevent1231

condensation. To account for the density of acetone, we blended air (59% v/v) and helium (41% v/v)1232

for the carrier gas. Assuming 95% saturation after contact with the liquid acetone, the gas mixture was1233

approximately 25% acetone by volume and neutrally buoyant.1234

An Nd:YAG pulsed laser emitted light at a wavelength of 266 nm and a frequency of 15 Hz to1235

illuminate the acetone plume. After excitation at that wavelength, acetone vapor fluoresces with an1236

intensity proportional to its concentration. A high quantum efficiency sCMOS camera imaged the1237

acetone plume fluorescence at 15 Hz. To enhance signal and minimize noise, we collected data in a1238

dark environment, used a lens with high light-gathering capabilities (f/0.95), and binned the pixels1239

from 2048x2048 native resolution to 512x512 resolution (0.74 mm/pixel).1240

Images were post-processed using an algorithm adapted from [19] to correct for variations in laser1241

sheet intensity, lens vignette, and pixel-to-pixel gain variation. The correction used a spatial map of1242

the image system response by imaging the test section while it was filled with a constant and uniform1243

distribution of acetone. Signal intensities were normalized by the intensity at the tube exit such that1244

concentrations have average values between 0 and 1.1245

The “plume walk” stimulus was generated by taking the time course of odor concentration along1246

a linear trajectory going upwind through a plume movie at 6 mm/s (the average ground speed of our1247

flies), starting 8.9 cm laterally from the midline and 30 cm downwind from the source.1248
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Figure 1: ON and OFF responses to an attractive odor pulse. A) Schematic of the behavioral apparatus (side view) showing illumination and imaging
camera. B) Schematic of the behavioral arena (top view) showing four behavior chambers and spaces to direct air and odor through the apparatus. Dots
mark air and odor inputs. Black cross: site of wind and odor measurements in E. C) Example trajectories of three different flies before (black), during
(magenta) and after (cyan) a 10 second odor pulse showing upwind runs during odor and search after odor offset. D) Distribution of fly positions on
trials with wind and no odor; flies prefer the downwind end of the arena. E) Average time courses of wind (top; anemometer measurement; n=10) and
odor (bottom; PID measurement normalized to maximal concentration; n=10) during 10 s odor trials. Measurements were made using 10% ethanol
at the arena position shown in B. F) Calculated parameters of fly movement averaged across flies (mean±SEM; n=75 flies, 1306 trials; see Methods).
Traces are color coded as in C. Gray shaded area: odor stimulation period (ACV 10%). All traces warped to estimated time of odor encounter and loss
prior to averaging. Small deflections in ground speed near the time of odor onset and offset represent a brief stop response to the click of the odor
valves (see Figure 3-figure supplement 1). G) Average values of motor parameters in F for each fly for periods before (-30 to 0 s), during (2 to 3 s) and
after (11 to 13 s) the odor. Gray lines: data from individual flies. Black lines: group average. Horizontal lines with asterisk: Statistically significant
changes in a Wilcoxon signed rank paired test after correction for multiple comparisons using the Bonferroni method (see Methods for p values). n.s.:
not significant.
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Figure 2: Multimodal and unimodal contributions to olfactory behavior. A) Stabilization of the antennae abolishes odor-evoked changes in upwind
velocity but not curvature. Traces show mean±SEM for wind-blind (n=13 flies, 240 trials) and sham-treated flies (n=15 flies, 217 trials; see Methods)
B) Mean values of upwind velocity, curvature and ground speed in wind-blind flies during periods before, during, and after the odor pulse (time
windows as in Figure 1G). Gray lines: data from individual wind-blind flies. Orange lines: group average. Horizontal lines with asterisk: statistically
significant changes in a Wilcoxon signed rank paired test after correction for multiple comparisons using the Bonferroni method (see Methods for p
values). n.s.: not significant. C) Example trajectories of three different wind-blind flies before (black), during (magenta) and after (cyan) the odor pulse.
Note different orientations relative to wind during the odor. D) Antenna stabilization decreases preference for the downwind end of the arena on
trials with wind and no odor. Blue: average (±SEM) arena position of sham-treated flies on trials with wind and no odor. Orange: average position
of wind-blind flies in the same stimulus condition. Black: Average position of intact (not-treated) flies in the absence of both odor and wind (n=23
flies, 1004 trials). The average arena position of wind-blind flies did not differ significantly from that of no-wind flies (p=0.93). Sham-treated flies spent
significantly more time downwind than wind-blind (p=0.04) or intact flies in the absence of wind (p=0.0027). Horizontal lines with asterisk: statistically
significant changes in a Wilcoxon rank sum test (alpha=0.05). n.s.: non-significant. Black lines between C and D provided for reference of dimensions
in D.
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Figure 3: Responses of walking flies to dynamic odor stimuli. A) Upwind velocity (left, top traces; average±SEM) of different groups of flies
responding to a 10 s pulse of ACV at dilutions of 0.01% (n=13 flies, 147 trials), 0.1% (n=19 flies, 304 trials), 1% (n=18 flies, 302 trials) and 10% (n=75 flies,
1306 trials). Left-bottom traces show PID measurements using ethanol (max concentration 10%), normalized to maximal amplitude. Right inset: mean
upwind velocity during odor (2 to 3 s) as a function of odor concentration (black; mean±SEM), and fitted Hill function (green; green dot: kd=0.072%).
B) Turn probability calculated from the same data. Right inset black traces: mean turn probability after odor (11 to 13 s). kd=0.127% for fitted Hill
function (green). C) Upwind velocity (average±SEM) in response to stimuli with off-ramps of 2.5 (n=38 flies, 528 trials), 5 (n=38 flies, 567 trials) and
10 (n=35 flies, 557 trials) seconds duration. Bottom traces: PID signals of the same stimuli using ethanol. D) Same as C, showing turn probability from
the same data sets. White arrows in C and D show elevated upwind velocity and turn probability that co-occur during a slow off-ramp. Black arrow
in D: peak turn probability response at the foot of the off-ramp. E) Upwind velocity (mean±SEM; n=31 flies, 346 trials) in response to an ascending
frequency sweep stimulus. Bottom trace: PID signal of the stimulus, measured using ethanol. Right inset: average (±SEM) modulation of upwind
velocity as a function of frequency in each stimulus cycle (see Methods). F) Same as E for turn probability calculated from the same data. Right inset:
modulation of turn probability as a function of frequency. G) Equivalent to E, showing responses to a descending frequency sweep (n=33 flies, 345
trials). In the inset, the first high-frequency cycle was left out of the analysis. H) Same as G for turn probability calculated from the same data. I)
Equivalent to G, showing responses to a simulated “plume walk” (n=30 flies, 393 trials). J) Same as I for turn probability calculated from the same data.
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Figure 4: Computational modeling of ON and OFF response functions. A) ON model schematic featuring adaptive compression followed by linear
filtering. B) Root mean squared error between predictions of four ON models and behavioral data. FC: filter then compress; CF: compress then filter;
FAC: filter then adaptive compression; ACF: adaptive compression then filtering. C) Upwind velocity of real flies (top thiner traces; average; same
data in Figure 3A) and predictions of the ACF ON model (top thicker traces) to square pulses of ACV at different concentrations. Bottom traces:
stimuli, normalized to maximal amplitude. Note that adaptation appears only at higher concentrations and that responses saturate between 1 and
10% ACV. D) Upwind velocity of real flies (top black trace; average; same data in Figure 3E), and predictions of ACF (red) and CF (pink) ON models
to an ascending frequency sweep. Bottom trace: stimulus. Note that the model without adaptation (CF) exhibits saturation not seen in the data. E)
Same as D for a descending frequency sweep stimulus (same data in figure 3G). F) OFF model schematic featuring adaptive compression followed
by differential filtering. G) Root mean squared error between predictions of four OFF models and behavioral data. H) Turn probability of real flies
(top thiner traces; average; same data in Figure 3D) and predictions of the ACF OFF model (top thicker traces) to odor ramps of different durations.
Bottom traces: stimuli. I) Turn probability (top black trace; average; same data in Figure 3F), and predictions of ACF OFF model (top red trace) to an
ascending frequency sweep. Bottom trace: stimulus. J) Same as I for a descending frequency sweep stimulus (same data in Figure 3H). K) Upwind
velocity (top black trace; average; same data in Figure 3I), and predictions of CFA ON model to the “plume walk” stimulus (see Results). Bottom trace:
stimulus. RMSE=1.355. L) Same as K for the same stimulus, showing turning probability of real flies (top black trace; average; same data in Figure 3J)
and predictions of the ACF OFF model (top red trace). Bottom trace: stimulus. RMSE=0.038. Plume walk responses were not used to fit the models.
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Figure 5: A navigation model based on ON and OFF functions can recapitulate many aspects of our behavioral data. A) Schematic of a fly showing
model outputs (v: ground speed; q̇: angular velocity) and input (y: wind angle with respect to the fly). B) Schematic of the model algorithm. Odor
stimuli are first adaptively compressed, then filtered to produce ON (magenta) and OFF (cyan) functions. These functions modulate ground speed
and angular velocity of the simulated fly. Angular velocity has both a random component controlled through turn probability and a deterministic
component guided by wind. C) Wind direction influences behavior through two sinusoidal D-functions which drive upwind (magenta) and downwind
(black) heading respectively. A weak downwind drive is always present, while a stronger upwind drive is gated by the ON function. D) D-functions
(average angular velocity as a function of wind angle with respect to the fly) calculated from responses of real flies (data from Figure 1, mean±SEM,
n=75 flies, 1306 trials). Magenta trace: data from 0-2 s during odor. Black trace: 0-2 s after odor. E-G) Simulated trajectories of model flies are similar
to those of real flies. E) Ground speed, upwind velocity and turn probability (average; n=75 flies, 1306 trials) from real flies (black; data from Figure 1)
and from 500 trials simulated with our model (orange) in response to a 10 second odor pulse. F) Example trajectories from the simulation in E. Black:
before odor. Magenta: during odor. Cyan: after odor. Black arrow: direction of the wind. G) Mean values of upwind velocity and turn probability
from the model simulations in E, before (-30 to 0 s), during (2 to 3 s) and after (11 to 13 s) the odor pulse. Gray lines: data from individual trials. Black
lines: group average. Horizontal lines with asterisk: Statistically significant changes in a Wilcoxon signed rank paired test after correction for multiple
comparisons using the Bonferroni method (see Methods for p values). n.s.: not significant. H-I) Simulated trajectories of wind-blind flies. H) Upwind
velocity and turn probability (average) from 500 trials simulated in response to a 10 second odor pulse with no wind (both D-functions coefficients
set to 0) to mimic the responses of wind-blind flies (see Figure 2). Note the absence of modulation in upwind velocity. I) Example trajectories from
the simulation in H. Color code and arrow as in F. Note that trajectories preserve the characteristic shapes of the ON and OFF responses but lack any
clear orientation during ON responses. J-K) Simulated trajectories of weak and strong-searching flies. J) Upwind velocity and turn probability of
one weak-searching fly. Real fly appears in green-highlighted examples in Figure 1-figure supplement 2 (here black traces; average; n=15 trials). The
model simulation (green traces; average; n=15 trials) was created by using the mean upwind velocity and turn probability for this fly (Figure 1-figure
supplement 2, green) as a fraction of the population average upwind velocity and turn probability to scale the ON and OFF functions (values used: ON
scale=0.3, OFF scale=0.26). Bottom: example trajectories from the model simulation, compare directly to Figure 1-figure supplement 2A left (color code
and arrow as in F). K) Equivalent to J, for one strong-searching fly (n=34 trials). Compare blue-highlighted examples in Figure 1-figure supplement 2
with the model simulation (n=34 trials; values used: ON scale=1.9, OFF scale=1.6).32



Figure 6: Real and virtual behavior of flies in a turbulent odor environment. A) Schematic of a turbulent wind tunnel used for behavioral experiments
and PLIF imaging (top view; see Methods). Black arrows: direction of air flow drawn by fan at downwind end; top arrow coincides with the tube
carrying odor to the arena. Black dots and associated traces: sites of PID measurements (and corresponding signals; units normalized to mean
concentration near the odor source). Smaller dashed square: Area covered with the PLIF measurements in the Colorado wind-tunnel (see Methods).
Yellow line: position of the wooden dowel grid. Purple line: position of the honeycomb filter. Blue square: perimeter moat filled with water. B) PLIF
measurements of an odor plume (average of 4 minutes of data). Blue/red horizontal lines: Sites of cross-sections (bottom plot). Bottom plot: cross-
sections of the plume measured with PLIF (solid lines; 4 minutes average) and PID (dashed lines; 3 min average). Right plot: Odor concentration along
midline of the plume (x=0) measured with PLIF and PID (4 and 3 min average, respectively). All measurements in B appear normalized to average
odor concentration at the source. C-D) Flies exhibit a downwind preference in the turbulent wind tunnel. C) Distribution of fly positions during trials
with wind but no odor (n=14 flies/trials). D) Same as C, during trials with no wind (n=13 flies/trials). E) Example trajectories of flies during trials
with an odor plume. From left to right: a successful trial in which the fly came within 2 cm of the source; intermediate trial in which the fly searched
but did not find the source; failed trial where fly moved downwind. Arrowheads: starting positions. Green circles: 2 cm area around odor source.
Dashed gray lines: area covered by PLIF measurements (use as positional reference; right-most trace shows only lower section of outline). F) Example
trajectory of a model fly that successfully found the odor source (background image from B). Colors show times when ON>0.1 (magenta) or OFF>0.05
(cyan). White arrowhead: Starting position and orientation. Green circle: 2 cm area around source. G) Time courses of odor concentration encountered
along the trajectory in F, with corresponding ON and OFF responses. Green arrowheads: time of entrance into the green circle. H) Example trajectories
of model flies (color code, green circle and arrowheads as in F). Left trace and green circle associated: intermediate trial where fly searched but did
not find the source. Right trace: failed trial where fly moved downwind. Dashed line: lower section of the plume area. I) Performance (proportion of
successful trials±SE; see Methods) of real and model flies in a plume. Data from real flies on trials with only wind (n=13 flies/trials) and trials with
wind and odor (n=14 flies/trials). Model data using parameters fit to the mean fly in every trial (n=500 trials; see Results). Model with variable ON and
OFF scaling, reflecting variability in ON/OFF responses across individuals (n=500 trials; see Results and Figure 1-figure supplement 2). J-K) Average
strength of ON (J) and OFF (K) responses as a function of position for model flies in the plume (data from simulation with mean parameters). Red dots:
odor source. Note that ON is high throughout the odor plume, especially along its center, while OFF is highest at the plume edges. L) Performance
of the model in a plume (proportion of successful trials) with different scaling factors applied to ON and OFF responses. Black dot: performance of
model using fitted values. M) Same as L for model flies navigating a simulated odor gradient with a gaussian distribution and no wind (see Methods).
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Figure 7: Addition of a bilateral sampling component can improve olfactory navigation. A) Example trajectories from a series of model simulations
of 500 trials each. In the first simulation the model was unchanged (as in Figure 6). In the second and third simulations a bilateral component was
added to total angular velocity with gain values (k7) of 40 and 300 deg/s, respectively. In the fourth simulation all components of the model were
active, but the information from the antennae was swapped —left was interpreted as right, and vice-versa. In the fifth simulation wind sensation was
turned off. Trajectories’ colors show times when ON>0.1 (magenta) or OFF>0.05 (cyan). Dashed gray lines: area of odor plume data (outside this area
odor concentration is zero). A larger area is shown to display the behavior more clearly. Green circle: area of 2 cm around the odor source, used to
define success in trials. B) Density maps of flies’ positions (logarithm of the proportion of total time) corresponding to each of the simulations in A,
with data only from the areas within the dashed lines in A. Orange dots: position of the odor source. C) Success rate (proportion of successful trials)
in each of the simulations in A (average±SEM; see Methods). Horizontal lines with asterisk: Statistically significant changes (see Methods for details
and p values). n.s.: not significant. D) Performance of the model in a plume (sucess rate) as a function of wind sensitivity and strength of the bilateral
component. Note that values for k7 don’t scale linearly. Black dot: performance of model using fitted values (see Results). E) Equivalent to D, showing
performance as a function of strength of the OFF response and of the bilateral component.
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ON MODEL ⌧ON — ⌧A scaleON RMSE Corr.Coef.
Filtering then adaptive compression (FAC) 0.34 — 20.36 5.9 1.5784 0.89
Adaptive compression then filtering (ACF) 0.72 — 9.8 7.3 1.4122 0.92

Filtering then compression (FC) 0.04 — — 4.4 1.747 0.85
Compression then filtering (CF) 0.3 — — 4.5 1.7058 0.86

OFF MODEL ⌧OFF1 ⌧OFF2 ⌧A scaleOFF RMSE Corr.Coef.
Filtering then adaptive compression (FAC) 0.76 3.96 16.7 0.3 0.0345 0.75
Adaptive compression then filtering (ACF) 0.62 4.84 10.08 0.6 0.0336 0.77

Filtering then compression (FC) 0.58 3 — 0.1 0.0409 0.62
Compression then filtering (CF) 0.06 5.02 — 0.3 0.0389 0.69

TABLE 1. Values of ON and OFF functions parameters. Results of fitting the different ON and OFF functions to behavioral data by non-linear
regression. Highlighted in green are the models of choice and the parameters that were used in the navigation model and the simulations shown
in Figures 5 and 6. ⌧x : different time constants of ON, OFF and adaptation filters. RMSE: root mean squared error between predictions of the
models and the corresponding data they were fitted to. Corr.Coef.: Pearson’s linear correlation coefficients between predictions of the models and the
corresponding data they were fitted to.

NAVIGATION MODEL
Parameter Value Units Role

P0 0.12 Rate Baseline turn rate
s 20 deg/s Standard deviation of angular velocity distribution
v0 6 mm/s Baseline ground speed
k1 0.45 mm/s Strength of ON speed modulation
k2 0.8 mm/s Strength of OFF speed modulation
k3 0.03 — Strength of ON turning modulation
k4 0.75 — Strength of OFF turning modulation
k5 5 deg/sample Strength of ON upwind-drive modulation
k6 0.5 deg/sample Strength of downwind-drive modulation

TABLE 2. Values of navigation model parameters used in all simulations in this article, with their function in the model explained.
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Figure 1-figure supplement 1. Warping method corrects for differences in odor encounter timing as a function of position within the arena. A)
Schematic of the behavioral arena marking different points at which we measured the odor waveform by PID. Arrow signals wind direction. B) PID
measurements of an upward frequency sweep stimulus recorded at the three points in A using 10% ethanol. Note the delay between the stimulus
measured at the source (blue) and the one measured at the bottom of the arena (yellow). C) Same PID traces as in B after warping traces measured
downwind of the source (red and yellow). Note the overlap between the three traces in each phase of the stimulus. D) Trajectory of a fly in a single trial
while experiencing the stimulus depicted in C. Time in the stimulus (0-25 s) is color coded, showing that the fly moved from the bottom of the arena to
the top during the stimulus. E) Upwind velocity of the fly in the example trial shown in D. Black trace represents raw upwind velocity. Magenta trace
shows data after warping. Note that warping reduces the apparent latency of the first behavioral response, and that the difference between the traces
decreases as the fly approaches the odor source F) Same as E, but traces represent the mean upwind velocity of a group of flies in response to the same
stimulus (n=31 flies, 346 trials; data in figure 3E). Note that warping improves the phasic structure in the data.
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Figure 1-figure supplement 2. Variability between individuals in responses to an odor pulse. A) Example trajectories from two different flies (left
and right groups), from non-consecutive trials, in response to a 10 s odor pulse. Left hand fly: weak searcher, right-hand fly: strong searcher. B) Mean
upwind velocity during odor (2 to 3 s) and turn probability after odor (11 to 13 s) for each fly (n=75 flies; data in Figure 1). Each point represents the
average of a single fly (mean±SEM). Dashed lines: group average values for ON and OFF responses. Green and blue dots: weak- and strong-searching
flies featured in panels A and C. Data from these flies is used in Figure 5J and K. C) Average upwind velocity and turn probability of weak- and
strong-searching flies in B, and of the whole group (gray traces; n=75 flies, 1306 trials), in response to a 10 s odor pulse. D) Flies exhibit characteristic
search strengths. Left plot: upwind velocity for each fly on half of trials versus upwind velocity in remaining trials (n=75 flies; trials for each half were
randomly selected). Each point represents mean upwind velocity 2-3 s after odor onset for each fly in Figure 1. Middle plot: same analysis performed
on trials where fly identity was scrambled. Right plot: Quantification of correlations for upwind velocity during odor, ground speed before odor, and
turn probability at offset. Each bar shows the correlation coefficient (mean±STD) from 10 repetitions of the corresponding correlation, either with fly
identity preserved (filled bars), or scrambling the data (blank bars). Ground speed (GS) was taken from -30 to 0 seconds before odor. Upwind velocity
(UV) was taken from 2 to 3 seconds during odor. Turn probability (TP) was taken from 1 to 3 seconds after odor. E) Trial-by-trial correlation coefficients
between movement parameters (computed for each fly, then averaged across flies; n=75 flies). ON parameters are correlated with each other, as are
OFF parameters, but ON and OFF are not correlated with each other. This suggests that ON and OFF responses are separately regulated on a trial by
trial basis. GSON : Mean ground speed from 2-3 s during odor. UVON : Mean upwind velocity from 2-3 s during odor. AVOFF : Mean angular velocity
from 1-3 s after odor. COFF : Mean curvature from 1-3 s after odor. TPOFF : Mean turn probability from 1-3 s after odor. F) Mean upwind velocity from
2-3 s during odor for each trial of every fly in Figure 1 in which the stimulus was a 10 s odor pulse, represented in chronological order along the X axis.
Gray lines: data from individual flies. Black traces: Area between SEM errors.
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Figure 1-figure supplement 3. Sighted flies show ON and OFF responses to odor. A) Calculated parameters of fly movement averaged across flies
(mean±SEM). Black traces represent responses of blind flies w1118 5905 norpA[36] (same data as in Figure 1F; n=75 flies, 1306 trials). Orange traces are
responses of sighted flies w1118 5905 (n=56 flies, 1155 trials; see Methods). Gray shaded area: odor stimulation period (ACV 10%). All traces warped
to estimated time of odor encounter and loss prior to averaging. Small deflections in ground speed near the time of odor onset and offset represent
a brief stop response to the click of the odor valves (see Figure 3-figure supplement 1E). B) Average values of motor parameters in A for each fly for
periods before (-30 to 0 s), during (2 to 3 s) and after (11 to 13 s) the odor. Gray lines: data from individual flies. Orange thicker lines: group average.
Horizontal lines with asterisk: Statistically significant changes in a Wilcoxon signed rank paired test after correction for multiple comparisons using
the Bonferroni method (see Methods for p values). n.s.: not significant.
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Figure 3-figure supplement 1. Data processing methods. A-C) Segmentation of data into moving and non-moving epochs for analysis. A) Distribution
of ground speed values for all flies during trials with a 10 s odor pulse (n=75 flies, 1306 trials; data from Figure 1). Y axis on a logarithmic scale. Note
large peak close to 0mm/s corresponding to non-moving epochs. B) Probability of moving at greater than 1mm/s increases during odor and remains
elevated for tens of seconds after odor offset. PID measurement (top trace) and probability of movement (bottom trace) during a 10 s odor pulse
(mean±SEM; n=75 flies, 1306 trials; data from Figure 1). Thus, if non-moving periods are not omitted from computation of movement parameters
such as ground speed and angular velocity, the means of these parameters are heavily influenced by the fraction of non-moving flies (i.e. the number
of zeros) in each epoch. C-D) Effects of low pass filtering on estimates of behavioral responses to fluctuating stimuli. C) Upwind velocity (top) and
ground speed (middle) of flies in response to an ascending frequency sweep stimulus (mean±SEM; n=31 flies, 346 trials; data from Figure 3E). Blue
traces: data as it was used in Figure 3. Red traces: data processed exactly as the blue traces, except we omitted the low-pass filtering at 2.5 Hz. Note
that the difference between the two sets is small and mostly shows as increased high-frequency noise in the periods before the stimulus. Bottom black
trace: stimulus. D) Same as C, showing turn probability (top) and curvature (middle) in response to the same stimulus. E-F) Reliable modulation of
behavior at high frequencies can be observed in response to valve clicks. E) Mean ground speed (n=31 flies, 248 trials) in response to a random train
of valve clicks with a 50% probability of occurrence. Vertical gray lines: time at which the odor valves opened or closed, producing a click sound
and slight vibration. Note that flies slowed their ground speed after every click. F) Modulation of ground speed during random valve clicks (black
trace; mean±SEM (absolute values); n=31 flies, 248 trials; data in E) and during every cycle of an ascending frequency sweep stimulus (green trace;
mean±SEM; n=31 flies, 346 trials; data and analysis in Figure 3E, inset). Frequency of valve clicks ranged from 0.18 to 2 Hz and was calculated as 1
over the inter-click interval (responses to the first click were ignored).
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SUPPLEMENTARY VIDEO 1. Behavior of four flies in response to an ACV 10% pulse. The time1264

of the odor stimulus is signaled by the green dot appearing at the top of the image. Flies start to move1265

upwind shortly after the start of the stimulus (partly due to the time it takes for the odor front to reach1266

their respective positions), and they stop advancing upwind after the odor is gone and engage in a1267

more localized search behavior. Air and odor move from the top of the image towards the bottom at1268

11.9 cm/s.1269

SUPPLEMENTARY VIDEO 2. Behavior of a model fly navigating an odor plume. The video1270

shows 3 minutes long trial, sped up 4 times. The background image represents the odor concentration1271

of the plume (equivalent to Figure 6B) recorded by PLIF in the Colorado wind tunnel (see Methods).1272

The moving dot represents the position of the model fly, with changing colors depending on its current1273

behavior. Magenta dot: ON response is larger than 0.1. Cyan dot: OFF response is larger than 0.05.1274

White circle: no odor-evoked responses.1275
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