
ORIGINAL CONTRIBUTION

Scan for Author
Audio Interview

Pattern Classification of Volitional
Functional Magnetic Resonance Imaging
Responses in Patients
With Severe Brain Injury
Jonathan C. Bardin, BA; Nicholas D. Schiff, MD; Henning U. Voss, PhD

Background: Recent neuroimaging investigations have
explored the use of mental imagery tasks as proxies for
an overt motor response, in which patients are asked to
imagine performing a task, such as “Imagine yourself
swimming.”

Objectives: To detect covert volitional brain activity in
patients with severe brain injury using pattern classifi-
cation of the blood oxygenation level–dependent (BOLD)
response during mental imagery and to compare these
results with those of a univariate functional magnetic reso-
nance imaging analysis.

Design: Case-control study.

Setting: Academic research.

Participants: Experiments were performed in 8 healthy
control subjects and in 5 patients with severe brain in-
jury. The patients with severe brain injury constituted a
convenience sample.

Main Outcome Measures: Functional magnetic reso-
nance imaging data were acquired as the patients were

asked to follow commands or to answer questions using
motor imagery as a proxy response.

Results: In the controls, the responses were accurately
classified. In the patient group, the responses of 3 of 5
patients were correctly classified. The remaining 2 pa-
tients showed no significant BOLD response in a stan-
dard univariate analysis, suggesting that they did not per-
form the task. In addition, we showed that a classifier
trained on command-following data can be used to evalu-
ate a later communication run. This technique was used
to successfully disambiguate 2 potential BOLD re-
sponses to a single question.

Conclusions: Pattern classification in functional mag-
netic resonance imaging is a promising technique for ad-
vancing the understanding of volitional brain responses
in patients with severe brain injury and may serve as a
powerful complement to traditional general linear model–
based univariate analysis methods.
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M ANY PATIENTS WITH SE-
vere brain injury lack
a reliable motor out-
put channel, making
accurate assessments

of cognition difficult or impossible.1-3 Re-
cent neuroimaging investigations have ex-
plored the use of mental imagery tasks as
proxies for an overt motor response, in

which patients are asked to imagine per-
forming a task, such as “Imagine yourself
swimming.” These paradigms have been
useful in identifying covert command fol-
lowing and, in a single case,4 the ability to
answer simple yes or no questions.5,6

These investigations have used tradi-
tional univariate data analysis tech-
niques, focusing primarily on the pres-

ence or absence of clusters of activation
in or near the supplementary motor area
(SMA) for readout of motor imagery per-
formance. In particular, they have fo-
cused on region-of-interest (ROI) ap-
proaches, limiting the analysis to the SMA.
While univariate techniques allow for the
discovery of clusters of individual voxels
that meet a statistical threshold, multivar-
iate techniques can allow for detection of
spatially distributed patterns of activa-
tion that are unlikely to be revealed using
univariate techniques, particularly those
focused on a limited ROI.7 A previous
study5 among patients with severe brain
injury revealed significant activation out-
side of the SMA, suggesting that a spa-
tially agnostic approach may be useful in
detecting responses in this group. In this
study, we apply multivariate pattern analy-
sis (MVPA) classification to functional
magnetic resonance (fMR) imaging data
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of patients following a command to “Imagine yourself
swimming” in 8 healthy control subjects and in 5 pa-
tients with severe brain injury.

METHODS

PARTICIPANTS

Experiments were performed in 8 healthy control subjects and
in 5 patients with severe brain injury. The Institutional Re-
view Board of Weill Cornell Medical College approved all ex-
periments, and informed consent was obtained from the healthy
volunteers and from the legally authorized representatives of
the patients with severe brain injury. The patients with severe
brain injury constituted a convenience sample. For the pa-
tient group, the Table summarizes demographic information,
cause of injury, and behavioral assessments using the Coma Re-
covery Scale–Revised.8 More details about individual patients
are given in the eAppendix (http://www.archneurol.com).

fMR IMAGING PARADIGM

In the command-following paradigm, the controls heard in-
structions to imagine themselves swimming, starting with a com-
mand “Imagine yourself swimming” and stopping with a “Stop”
command. In the interim, the controls were required to think
of nothing in particular. Eight blocks of 16 seconds of rest al-
ternated with 16 seconds of motor imagery. Instructions were
part of the task blocks (4 seconds). For the patients, the same
timing was used, but the instructions during imaging were
“Imagine yourself swimming. . . . Stop imagining swimming.”
One run of 16 trials each was collected for each participant.

In the multiple-choice paradigm, the participants were taught
the suit and face of a playing card. Controls chose a card at ran-
dom from a stack of face cards. The patients with severe brain
injury who performed this task were shown and told the iden-
tity of a face card by an investigator who was not involved in
the data analysis. The task consisted of 12 seconds of re-
sponse, in which the participant imagined swimming, fol-
lowed by 4 seconds of rest, for each suit or face, repeated 4 times.
The wording was “If your card is a [club/diamond/heart/spade
or ace/jack/king/queen], imagine swimming now. . . . Stop.” Two
runs of 16 trials each were collected for each participant.

MR IMAGING DATA ACQUISITION

Before the MR imaging, the participants were instructed to lie
still with their eyes closed. Soft padding was placed around the
head and was anchored by the head coil caging to limit mo-
tion. Tasks were verbally explained to the participants before
the experiments, and instructions were repeated immediately

before each corresponding imaging. The participants used foam
earplugs for noise protection and headphones with noise pro-
tection capability. During data acquisition, prerecorded audi-
tory instructions were played out on a PC with an MR imaging–
compatible audio system (Resonance Technology, Inc). The
volume of the headphones was adjusted to the comfort level
of the controls. For the patients, the volume was set at the com-
fort level of one of us (H.U.V.). Data were acquired on a 3.0-T
MR imaging system (Signa Excite HDx; General Electric) with
an 8-channel head receive–only coil. For fMR imaging, a GE-
EPI sequence was used (2-second repetition time, 30-
millisecond echo time, 70° flip angle, 64�64–pixel acquisi-
tion and reconstruction matrix, 28 sections of 5-mm thickness,
and 24-cm field of view). The resulting voxel size was
3.75�3.75�5 mm. The paradigm was the same for controls
and for patients (128 total repetitions during 4 minutes and
16 seconds). To ensure saturation of the signal, at least 4 ac-
quisitions at the beginning of each imaging session were dis-
carded before starting the tasks.

fMR IMAGING MVPA DATA ANALYSIS

The MVPA classification was performed using the open-
source Princeton MVPA Toolbox (http://code.google.com/p
/princeton-mvpa-toolbox)9 running in a commercially avail-
able software program (MATLAB; MathWorks). Data from 1
functional run per participant were broken up into sixteen 12-
second trials (8 trials of rest and 8 trials of imagining swim-
ming). The periods when instructions were being given were
excluded from the analysis. All data were convolved with a Cox
proportional hazards regression model special hemodynamic
response function using the waver function in the open-
source Analysis of Functional NeuroImages toolbox (http://afni
.nimh.nih.gov/afni). To eliminate uninformative voxels, we
implemented a feature selection step in which voxels that did
not significantly correlate with the regressors of interest were
eliminated. We determined significance for each voxel indi-
vidually using an analysis of variance (ANOVA) as imple-
mented by the Princeton MVPA Toolbox code statmap_anova
(P� .01 was considered significant). Crucially, the ANOVA was
only conducted on training data for each run, ensuring that fea-
ture selection was not “peeking.” The data were also z scored
to control for baseline shifts between different runs.9

For the command-following paradigm, classification was per-
formed using a scaled conjugate gradient10 neural network ap-
proach. It was implemented as a leave-one-out classifier (as per-
formed by the Princeton MVPA Toolbox code train_bp_netlab),
in which the data from 15 trials were used to predict the data
in the 16th trial. Briefly, the scaled conjugate gradient algo-
rithm iteratively adjusts an initially randomized set of internal
weights based on the spatial pattern of blood oxygenation level–
dependent (BOLD) activity present in the training data, and the

Table. Demographic Information, Cause of Injury, and Behavioral Assessments Using the CRS-R in Patients With Severe Brain Injury

Patient No./
Sex/Age, y Diagnosis TE, mo CRS-R Score Cause of Injury

1/F/25 MCS 29 10 Cerebrovascular accident (stroke)
2/M/25 Locked-in syndrome 23 Not tested TBI
3/F/19

Test 1 MCS 6 14 TBI
Test 2 Emerged from MCS 10 19 TBI

4/F/60 Emerged from MCS 32 23 Hypoxic-ischemic encephalopathy
5/M/40 MCS 62 14 TBI

Abbreviations: CRS-R, Coma Recovery Scale–Revised; MCS, minimally conscious state; TBI, traumatic brain injury; TE, time elapsed since injury.
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final set of weights is used to classify the test data. The algo-
rithm finds this optimal set of weights by iteratively moving
stepwise through weight space until the error function is mini-
mized.10 Although this approach is perfectly optimized only for
a truly convex weight space, it is a powerful training algo-
rithm and has been validated in fMR imaging studies.11-13

This process was performed 16 times, once for each trial,
and the results were averaged to calculate a mean classifica-
tion rate across the run. Because each trial had a duration of
12 seconds with a volume acquisition time of 2 seconds, the
classification of each trial had a maximum correct perfor-
mance of 6. This analysis was performed twice per partici-
pant, once with a whole-brain mask, where the classifier was
trained and tested on whole-brain data, and once with a mask
encompassing the premotor and motor areas, where the clas-

sifier was both trained and tested on data from this ROI. The
objective of this dual analysis was to determine whether an analy-
sis restricted to areas classically associated with motor imag-
ery would perform differently than one using data from the en-
tire brain. Such an approach is motivated by the common use
of ROI methods in this subfield, which may or may not be op-
timal for the detection of volition in the severely injured brain.

The analysis of data during the communication task was per-
formed using the same classification techniques as already de-
scribed. To determine whether responses observed in a multiple-
choice communication paradigm were similar to those in a
command-following paradigm, the classifier was trained on com-
mand-following data and then applied to the communication
data. This approach was motivated by the results of applying a
standard univariate analysis (methods are described in the Ap-
pendix), which revealed activations at or near the location of
the command-following response for more than 1 multiple-
choice response in one of the patients with severe brain injury
studied herein.5 These results raised the question of whether
multiple responses were truly signaled or if one response was
more similar to the command-following response than the other,
suggesting only one signaled response.

RESULTS

In controls and in patients, we found that using MVPA
classification with a whole-brain data set provided more
accurate results than a classification restricted to the SMA.
This suggests that a distributed pattern of activity best
distinguishes motor imagery from rest. Most important,
we found that a classifier trained on command-
following data discriminated between potential re-
sponses in a communication paradigm in which a pa-
tient with severe brain injury was asked to respond to a
multiple-choice question using motor imagery.

CONTROL SUBJECTS

All the control subjects showed MVPA classification rates
significantly above the chance level of �=.50 in the whole-
brain and ROI-masked analyses (Figure 1). The mean
classification rate � across 8 controls using data from the
whole brain was �=.80, while the mean classification rate
for the ROI analysis was �=.66. This difference was sta-
tistically significant (P � .001, 2-tailed t test). Indi-
vidual classification performances by all controls were
better for the whole-brain approach than for the ROI ap-
proach, although not all were statistically significantly
different. Univariate analysis of these data found that all
controls demonstrated a statistically significant BOLD re-
sponse; these responses in a representative control sub-
ject are shown in Figure 2A.

PATIENTS WITH SEVERE BRAIN INJURY

Three of 5 patients with severe brain injury showed MVPA
classification rates significantly above chance level
(Figure 3). Patient 1 and patient 2 demonstrated MVPA
classification rates above chance level in the whole-
brain analyses (�=.76 and �=.78, respectively) and in
the ROI analyses (�=.68 and �=.65, respectively), con-
sistent with the results of the univariate analysis, which
demonstrated significant task-related BOLD activity for
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Figure 1. Classification of command-following data in healthy control
subjects. Statistical comparisons between whole-brain and region-of-interest
(ROI) analyses were performed using 2-tailed t test (*P� .05 was
considered significant.) Horizontal line indicates chance level.
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Figure 2. Univariate analysis of command-following data. A, In a
representative control subject. B-E, In patients 1, 2, and 3 (D and E show
responses of patient 3 at test 1 and test 2, respectively). Numerals on the
color bar indicate t scores. Univariate analysis methods are given in the
eAppendix (http://www.archneurol.com).
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both patients in and around the SMA (Figure 2B and C).
Patient 3 was evaluated on 2 separate visits and demon-
strated MVPA classification rates above chance level on
both visits for the whole-brain analyses (�=.67 and �=.80,
respectively) and on the first visit only for the ROI analy-
ses (�=.66 and �=.45, respectively) (Figure 3). Whole-
brain univariate analysis of data from patient 3 at her first
visit revealed activity in and near the ROI (Figure 2D).5

Univariate analysis of data from her second visit re-
vealed a BOLD response outside of the ROI near the dor-
solateral prefrontal cortex, without significant activity in
the ROI (Figure 2E).4 Notably, results from the multi-
variate analysis strongly dissociate the whole-brain and
ROI analyses (Figure 3). Patient 4 and patient 5 demon-
strated MVPA classification rates at chance level. These
results are consistent with the results of the whole-
brain univariate analyses.5 Although the difference be-
tween the whole-brain and ROI analyses was not signifi-
cant across all patients with severe brain injury, analysis
across those patients who demonstrated a response in the
univariate analysis showed a significant difference be-
tween the analyses (P� .001, 2-tailed t test) (Figure 3).

We also performed univariate analysis for the multiple-
choice card-guessing paradigm. For patient 1, that analy-
sis demonstrated a statistically significant response to more
than 1 potential stimulus (Figure 4B).5 To attempt to
resolve this intermediate result, we examined whether a
classifier trained on command-following data would dis-
criminate between these 2 BOLD responses. We ini-
tially tested this approach on patient data when univari-
ate methods suggested only one response, specifically
when patient 1 was asked to indicate the face of the card
learned (Figure 4A). In this data set, the classifier trained
on command-following data performed above chance level
in detecting a response to a jack (�=.69), while it per-
formed at near-chance levels when attempting to detect
a response to an ace (�=.50) and all other face cards. An
ANOVA, followed by application of the Scheffé test, de-

termined that this difference was statistically significant
(P� .05, corrected for multiple comparisons).

We then used the same approach with the suit data,
where the univariate results were more ambiguous and
a signal seemed to indicate both club and spade
(Figure 4B). Notably, the classifier trained on command-
following data disambiguated these responses, classify-
ing a response to a club well above chance level (�=.69),
while classifying a response to spade and all other face
cards at chance levels. An ANOVA, followed by appli-
cation of Scheffé test, determined that this difference was
statistically significant (P� .05, corrected for multiple
comparisons). Interpretations of this disambiguation are
discussed in the “Comment” section.
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Figure 3. Classification of command-following data in patients with severe brain
injury. Statistical comparisons between whole-brain and region-of-interest
(ROI) analyses were performed using 2-tailed t tests (asterisks) *P� .05 was
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in the univariate analysis. Horizontal line indicates chance level.

0.00

0.90

0.40
0.50
0.60

0.80
0.70

Cl
as

si
fie

r P
er

fo
rm

an
ce

0.30
0.20
0.10

A

GLM Results

A J K Q

0.00

0.90

0.40
0.50
0.60

0.80
0.70

Cl
as

si
fie

r P
er

fo
rm

an
ce

0.30
0.20
0.10

B

GLM Results

♣ ♤ ♥ ♠

0.00

0.90

0.40
0.50
0.60

0.80
0.70

Cl
as

si
fie

r P
er

fo
rm

an
ce

0.30
0.20
0.10

C

GLM Results

♣ ♤ ♥ ♠

∗

∗

∗

Figure 4. Univariate analysis for the multiple-choice card-guessing
paradigm. A, Classification of communication face card data in patient 1.
Top: Shown is the performance of a classifier trained on the patient’s
command-following data and tested on the face card data. Statistical
significance was determined first using 1-way analysis of variance, followed
by application of Scheffé test (P� .05, corrected for multiple comparisons).
Bottom: The results of a univariate general linear model (GLM) analysis are
shown for each face card. The symbol for the correct card is outlined in
white. B, Same as in A for the suit card data. C, Same as in B for a
representative control subject. *Statistically significant differences using the
statistical test described earlier.
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For comparison, an identical analysis was performed
for a control subject who performed the command-
following and communication tasks during the same ex-
perimental session. Similarly, an ANOVA, followed by
application of Scheffé test, determined that the control
subject’s response to the correct card was statistically sig-
nificant (P� .05, corrected for multiple comparisons)
(Figure 4C).

COMMENT

In this study, we found that an MVPA machine-learning
algorithm successfully detected covert volitional neural ac-
tivity across 8 healthy control subjects and 5 patients with
severe brain injury. A related goal was to determine whether
a classifier trained on command-following data from an
ROI encompassing the premotor and motor areas would
perform better than one trained on data from the whole
brain, given that motor imagery is traditionally associ-
ated with differential BOLD activity in such areas and pre-
vious investigations have used analysis methods re-
stricted to the ROI. We found the opposite: in 6 of 8 control
subjects and in 3 of 5 patients with severe brain injury,
classifiers performed significantly better when data from
the whole brain were used. Indeed, there is evidence from
univariate analyses that significant activity exists well out-
side of the ROI, even for individuals who show ROI acti-
vation.5 As such, there is growing evidence that the SMA
ROI may be an overly limited region for capturing these
BOLD activity changes. This seems to be especially true
in the case of certain patients with severe brain injury who
appear to have only task-related activity outside of the SMA,
such as patient 3 herein.

Our data also suggest that pattern classification meth-
ods can be used to disambiguate multiple potential BOLD
responses to a single question. We found that a single pa-
tient herein produced a strong BOLD response to 2 adja-
cent responses to a multiple-choice question (Figure 4B),
one of which was correct and one of which was 1 re-
sponse block too late. Most important, that same patient,
when asked a slightly different question, had only one sig-
nificant BOLD response, in the response block directly af-
ter the correct answer (Figure 4A). As such, we hypoth-
esized that a cognitive delay could explain both responses;
the patient may have attempted to respond only during
the appropriate response period, but because of her in-
jury, the response was delayed by a single response block.

In this context, we asked whether a classifier could
disambiguate these multiple BOLD responses. We hy-
pothesized that the classifier would classify the 1-block
delayed responses above chance level, while classifying
the correct answers at chance levels. Indeed, this is what
our data show (Figure 4). This finding supports the hy-
pothesis of cognitive delay and suggests that patient 1
with severe brain injury in fact performed a successful
communication event. More generally, it demonstrates
that pattern classification methods can be useful in dis-
ambiguating intermediate responses by patients who are
unable to clarify their answers themselves. In principle,
demonstrating that an individual seems to have commu-
nicated is extremely important because the identification

of communication events can guide medical care and sur-
rogate decision making and may be linked to recovery.

The MVPA classification is increasingly being recog-
nized as a powerful fMR imaging data analysis method.7

While most MVPA studies to date have focused on de-
tecting nuanced differences between different classes of
stimuli via classification of covert neuronal activation pat-
terns, such as movies14 or visually presented words,15 the
objective of the present study was to determine whether
such a machine-learning algorithm could successfully de-
termine the presence or absence of task-related voli-
tional brain activity. The success of the method sug-
gests that MVPA analysis is a promising approach for
detection of volitional activity in patients who have im-
paired motor function.

While all command-following and communication fMR
imaging studies in patients with severe brain injury to date
have been performed using univariate methods, there are
several reasons why pattern classification approaches may
be more appropriate. We argue that the fundamental goal
of this research should not be to discover exact locations
of task-related BOLD activity but rather to determine
whether a rigorous statistical analysis finds a difference be-
tween the conditions. As a result, analyses may be able to
be spatially agnostic without losing information about task
performance. As a corollary, hypotheses of where activity
should be found have been necessarily based solely on con-
trol data,16 and as such this pattern of activity may not cap-
ture the variance that can be expected from a severely in-
jured brain (as shown in Figure 2). There is significant
evidence in particular that reorganization of functional net-
works after brain injury can occur, which may render ac-
tivation maps of controls obsolete.17-19 If these paradigms
are used in the future to ask patients important clinical or
personal questions, many of which are more complex than
a simple yes or no response, it is essential that the inter-
pretation of the response should be as accurate as pos-
sible. Within this context, our results represent a proof of
concept that pattern classification methods can be useful
in increasing the accuracy and specificity of the analysis
of these volitional paradigms.

In this study, we provide evidence that MVPA analy-
sis is sufficient to identify command-following perfor-
mance in healthy control subjects and in patients with
severe brain injury. In addition, we show that in this para-
digm whole-brain MVPA analyses perform better than
those restricted to the SMA ROI. Last, we found in a single
patient that command-following data could be used as a
localizer to train a classifier for subsequent detection of
communication responses. In addition, the significant im-
provements in whole-brain analyses over ROI analyses
provide further evidence that a distributed pattern of ac-
tivity underlies the signal being measured.

Given the small sample of this study, it is important
for these techniques to be further benchmarked in a study
of far greater size. In addition, increasing the imaging time
or the number of trials may significantly improve the qual-
ity of the MVPA classification. However, these initial re-
sults provide compelling evidence that MVPA classifi-
cation may provide a powerful complementary approach
to measuring volitional responses in patients with se-
vere brain injury.
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